Tumor microenvironment

The interaction between cancer cells and other cells around them including immune cells, blood vessel cells, and fibroblasts

Tumor draining lymph node immunomodulation to decrease recurrence in NSCLC

Jonathan Villena-Vargas, MD
Weill Medical College of Cornell University
New York

Lymph nodes are small structures that work as filters for foreign substances, such as cancer cells and infections. These nodes contain infection-fighting immune cells that are carried in through the lymph fluid. This project will study the lymph node draining basin, which is involved in the spread of a tumor from the original location site to distant sites, and whether activating cancer-fighting T-cells can decrease recurrence in NSCLC.  Dr. Villena-Vargas will use animal models to investigate whether immune checkpoint inhibitors enhance lymph node T-cells memory, which increases their ability to recognize cancer cells in the bod and can prevent metastatic recurrence.

Molecular Characterization of Lineage Plasticity

Helena Yu, MD
Memorial Sloan Kettering Cancer Center
New York

As a mechanism of resistance to EGFR inhibitors, cancers can change histology from adenocarcinoma to small cell or squamous cell lung cancer. Once this happens, EGFR inhibitors are no longer effective treatment; there are no strategies currently available to prevent or reverse transformation after it has occurred. Dr. Yu will use advanced molecular techniques to identify genetic changes that contribute to transformation. Understanding these genetic changes will identify biomarkers that can be utilized to develop treatments to prevent and reverse transformation.

Phase 1 first in-human clinical trial with a therapeutic ALK vaccine in patients with ALK+ NSCLC

Mark Awad, MD, PhD
Dana-Farber Cancer Institute
Boston
Roberto Chiarle, MD
Harvard University
Cambridge
MA

SCLC molecular subtypes to predict targeted and immune therapy response

Carl Gay, MD, PhD
The University of Texas MD Anderson Cancer Center
Houston

Dr. Gay and his team will test an immunotherapy-DNA damage response (DDR) inhibitor combination therapy in SCLC patients and validate a biomarker profile. Dr. Gay’s research aims to develop a new drug therapy combination and determine which patients are likely to benefit from it. 

Profiling the phenotype of tumor derived stromal fibroblasts

Funded by LUNGevity Foundation and The CHEST Foundation
Douglas Arenberg, MD
University of Michigan
Detroit

Fibroblasts are cells found in different tissues of the body, including lung tissue. Dr. Arenberg is studying differences in the types of proteins made by tumor-derived lung fibroblast cells and by normal lung fibroblast cells. With an understanding of which proteins make a tumor-derived fibroblast behave in such a way as to promote tumor growth and spread, there is potential to therapeutically target them.

Protein engineering to target tumor-stroma interactions in NSCLC

This grant was funded in part by Upstage Lung Cancer.
Alejandro Sweet-Cordero, MD
Stanford University
Stanford
Jennifer Cochran, PhD
Stanford University
Stanford
CA
Lung cancer cells depend on continuous cross-talk with other cells around them. Drs. Sweet-Cordero and Cochran will use decoy proteins to intercept and disable this essential molecular communications between the tumor and its environment, thereby destroying the cancer.