Molecular profile or molecular testing

Laboratory tests that help decide course of treatment 

Building Reliable Oncology Navigation to Ensure Adjuvant Management: BRONx-TEAM Project

Career Development Award
Tamar Nobel, MD, MPH
Montefiore Medical Center
Bronx
NY

The introduction of targeted therapies and immunotherapy for early-stage lung cancer is associated with improved survival, but patients can only benefit if they partake in adjuvant and neoadjuvant therapies.  Data has shown that inequalities exist for patients with lower socioeconomic status as well as non-White patients when it comes to being referred for and receiving treatment after surgery.  These inequalities are likely to increase as new drugs are developed in clinical trials comprised of predominantly white patients.  In this project, Dr. Nobel will study the impact of disparities on uptake of adjuvant therapy for NSCLC in a largely minority patient population at Montefiore Medical Center in Bronx, NY.  She will provide social support and health literacy to engage patients in their care and collect genetic data about their tumors, which will contribute to future clinical trials that are more inclusive.

 

 

Next-generation pathologic response assessment in patients with lung cancer

Career Development Award
Julie Deutsch, MD
Johns Hopkins School of Medicine
Baltimore
MD

Dr. Deutsch’s proposal centers around finding better pathologic predictors of response to neoadjuvant IO in early stage NSCLC.  She will utilize machine learning/artificial intelligence to test an algorithm that she and her team have developed that assesses percent residual viable tumor (%RVT), which is the amount of tumor left at the time of surgery.  Dr. Deutsch will also characterize tissue specimens using a novel immunofluorescence platform to identify cell types and spatial relationships that are associated with patient benefit to immunotherapy+chemotherapy.  This approach can help inform which patients should receive a given therapy, how they will respond, and additional possible targets for the development of new therapies.

 

 

Radiogenomic Biomarker and Multiomic Data Integration to Predict Radiation Response in Lung Cancer

Partner Awards
Grant title (if any)
ASTRO-LUNGevity Residents/Fellows in Radiation Oncology Seed Grant
Funded by the American Society for Radiation Oncology
Kailin Yang, MD, PhD
Cleveland Clinic Foundation
Cleveland
OH

Radiation therapy remains a cornerstone treatment for patients with locally advanced lung cancer, however knowing which patients will respond and which will not respond is still poorly understood.  The goal of this project is to analyze genomic and radiomic data from patients with NSCLC to understand how tumors change during therapy and create models to predict therapeutic response that will assist with clinical decision making.

Molecular Characterization of Lineage Plasticity

Partner Awards
Grant title (if any)
EGFR Resisters/LUNGevity Lung Cancer Research Award
Helena Yu, MD
Memorial Sloan Kettering Cancer Center
New York
NY

As a mechanism of resistance to EGFR inhibitors, cancers can change histology from adenocarcinoma to small cell or squamous cell lung cancer. Once this happens, EGFR inhibitors are no longer effective treatment; there are no strategies currently available to prevent or reverse transformation after it has occurred. Dr. Yu will use advanced molecular techniques to identify genetic changes that contribute to transformation. Understanding these genetic changes will identify biomarkers that can be utilized to develop treatments to prevent and reverse transformation.

Overcoming ALK resistance with covalent cysteine-reactive inhibitors

Partner Awards
A. John Iafrate, MD. PhD
Massachusetts General Hospital
Boston
MA
Liron Bar-Peled, PhD
Massachusetts General Hospital and Harvard Medical School
Boston
MA

Overcoming bypass signaling to enhance clinical responses in ALK-positive lung cancer

Partner Awards
Ibiayi Dagogo-Jack, MD
Massachusetts General Hospital
Boston
MA

Predictive biomarkers of radio-immunotherapeutic response in NSCLC

Career Development Award
Sean Pitroda, MD
The University of Chicago
Chicago
IL

Dr. Pitroda and his team will develop a biomarker signature that can predict which patients are the most likely to benefit from an immunotherapy-radiation therapy combination. The ultimate goal is to determine which patients are likely to benefit from this combination treatment.

Lung cancer detection by CRISPR-based detection of circulating tumor DNA

Career Development Award
This grant was funded in part by Schmidt Legacy Foundation and Upstage Lung Cancer
Edwin Yau, MD, PhD
Roswell Park Cancer Institute
Buffalo
NY

Currently,  computed tomography (CT) is available as a tool for the early detection of lung cancer in high-risk individuals. Unfortunately, it has a high false-positive rate: less than 5% of people with nodules found through CT actually have lung cancer. Apart from the distress associated with false positives, individuals may have to undergo invasive procedures, such as a biopsy, to rule out lung cancer.

Circulating tumor DNA (ctDNA) is DNA released from dying cancer cells into the bloodstream. Individuals with early-stage lung cancer may have ctDNA in their blood, even when the cancer is localized. CRISPR-Cas technology is a novel DNA modifying tool that can be used to develop sensitive, specific, and economic ctDNA assays. Dr. Edwin Yau will develop a CRISPR-Cas-based blood test to detect ctDNA in the blood of individuals suspected of having lung cancer. While the immediate goal of the project is to evaluate this blood test in individuals who have already undergone a CT scan, the ultimate goal of the project is to develop a blood test for screening all individuals.

Genome Alterations Associated With Airway Premalignant Lesion Progression

Career Development Award
Joshua Campbell, PhD
Boston University
Boston
MA

One of the challenges for early detection and prevention of squamous cell lung cancer, a type of non-small cell lung cancer (NSCLC), is the lack of understanding of how premalignant lesions develop and progress to lung cancer. Dr. Campbell is studying how normal lung cells acquire changes in their DNA to form premalignant lesions. His ultimate goal is to develop a biomarker to predict development of squamous cell lung cancer.

Detecting early stage lung cancer with circulating tumor cells

Career Development Award
Rajan Kulkarni, MD, PhD
Oregon Health and Science University (formerly at UCLA Medical Center)
Portland
OR

Dr. Kulkarni is studying how circulating tumor cells (cancer cells that are released into the blood stream) can be used to develop a blood test for lung cancer early detection and treatment. Funding from LUNGevity will help him use a novel technology called the Vortex Chip to test two things: first, if lung cancer be detected early by identifying circulating tumor cells in the blood and second, if there are biomarkers in circulating tumor cells that can differentiate patients who will respond to immunotherapy or chemotherapy.