Risk profile

The probability of developing lung cancer, as determined by laboratory tests and spiral CT

Early detection and prognosis of lung cancer using bioengineered implants

Ramon Ocadiz Ruiz, PhD
University of Michigan
Ann Arbor

Dr. Ocadiz Ruiz proposes to develop a bioengineered scaffolding and test it in mouse models.  If successful, this research could progress to a phase 1 clinical trial and lay the groundwork for a new technology to be used in individuals with increased risk of lung cancer. This technology has to potential to make biopsies and consequently, early detection, easier.

Integration of Liquid Biopsy Assays for the Early Detection of Lung Cancer

Maximilian Diehn, MD, PhD
Stanford University
Stanford

Lung cancer is the number one cause of cancer-related deaths in the US because it is often found only after it has spread to other organs in the body, decreasing the likelihood of surviving at least 5 years after diagnosis.  Only 21% of patients are diagnosed then their lung cancer is early stage, when it is most treatable.  The goal of this project is to create a new way to screen for lung cancer using a blood sample that can find early stage disease when patients can still be treated and/or cured.  In preliminary work, Dr. Diehn has developed a blood test that can identify tiny amounts of DNA from lung cancer cells and in this study he will improve this test and apply it to patients and healthy controls.  If successful, Dr. Diehn’s work has the potential to significantly improve early detection of lung cancer and improve outcomes for patients.

The Germline-Somatic Interaction in Young-Onset Lung Cancer

This grant was funded in part by Lung Cancer Initiative
Jaclyn LoPiccolo, MD, PhD
Dana-Farber Cancer Institute
Boston

Although the average age at diagnosis is 70, thousands of new patients under 45 are diagnosed with lung cancer every year, most of whom have never smoked.  Dr. LoPiccolo hypothesizes that these patients may share inherited genetic changes that predispose them to developing lung cancer at a younger age.  In a preliminary analysis of young-onset lung cancer patients, Dr. LoPiccolo has found that approximately 30% of these patients carry rare mutations in known cancer-associated genes.  In this study, Dr. LoPiccolo will investigate whether these mutations affect response to targeted or immune-based therapies.  This insight is likely to identify risk factors among young lung cancer patients, which could lead to improved screening and treatment options for this population.

Optimizing biomarker based strategies for lung cancer screening

Anil Vachani, MD
University of Pennsylvania
Philadelphia

Currently, low-dose computed tomography (LDCT) is the only tool for the screening and early detection of lung cancer in individuals who meet screening criteria. LDCT is not very sensitive; often, abnormalities identified in an LDCT scan turn out to be benign. However, ruling out cancer requires an invasive biopsy. Dr. Vachani is testing whether a biomarker signature can be integrated into LDCT screening to improve the sensitivity of LDCT so that patients may be spared unnecessary biopsies.

Pilot study of SGLT2 in the characterization of early lung adenocarcinoma

Claudio Scafoglio, MD, PhD
University of California, Los Angeles
Los Angeles

The protein SGL2 seems to be produced in higher quantities on abnormal lung cells than on normal lung cells. Dr. Scafoglio is testing whether SGL2 can be used to image lung cancer cells by using a new imaging technology.

Genome Alterations Associated With Airway Premalignant Lesion Progression

Joshua Campbell, PhD
Boston University
Boston

One of the challenges for early detection and prevention of squamous cell lung cancer, a type of non-small cell lung cancer (NSCLC), is the lack of understanding of how premalignant lesions develop and progress to lung cancer. Dr. Campbell is studying how normal lung cells acquire changes in their DNA to form premalignant lesions. His ultimate goal is to develop a biomarker to predict development of squamous cell lung cancer.

Circulating miRNA as a biomarker in lung cancer

Funded by LUNGevity Foundation and The CHEST Foundation
S. Patrick Nana-Sinkam, MD
The Ohio State University
Columbus

Dr. Nana-Sinkam is delineating the role of microRNA expression profiling in the diagnosis, management, and prognosis of lung cancer. He is testing whether microRNA expression profiles are detectable in the  blood of lung cancer patients. He will compare individuals with lung cancer with current and former smokers without lung cancer.

Autoantibody biomarkers for the detection of lung cancer

Funded equally by LUNGevity Foundation and the American Lung Association
Michael Tainsky, PhD
Wayne State University, Karmanos Cancer Institute
Detroit

Dr. Tainsky has developed a technology that takes advantage of the responses of the human immune system to identify cancer-associated proteins that bind to antibodies present in the blood of cancer patients but not in the blood of healthy subjects or those with benign diseases. Dr. Tainsky is working to develop a non-invasive screening test for the early detection of lung cancer by using cancer-associated antigens as biomarkers.

Diagnostic Test Development for Non-Small Cell Lung Cancer: Early Detection of Lung Cancer

Funded by LUNGevity Foundation and Partnership for Cures
Jeffrey A. Borgia, PhD
Rush University Medical Center
Chicago

Dr. Borgia is working to develop new biomarkers to strengthen the capabilities of the existing blood test for identifying the presence of metastatic progress in non-small cell lung cancer that he has developed. He plans to adapt the blood test to a diagnostic card format so that high-risk individuals can put blood droplets on diagnostic cards at home and mail them to a test facility where the blood will be extracted and tested for the biomarkers in the panel.

Development of simple blood and imaging tests that can identify and isolate lung cancers at their earliest stages

LUNGevity Foundation - Canary Foundation Research Grant
Canary Lung Cancer Early Detection Initiative
Canary Foundation
Palo Alto

The Initiative is developing a panel of blood-based biomarkers that will improve the reliability of different imaging approaches. It is also exploring markers that will predict the recurrence of lung cancer.