Screening

Optimizing biomarker based strategies for lung cancer screening

Anil Vachani, MD
University of Pennsylvania
Philadelphia

Currently, low-dose computed tomography (LDCT) is the only tool for the screening and early detection of lung cancer in individuals who meet screening criteria. LDCT is not very sensitive; often, abnormalities identified in an LDCT scan turn out to be benign. However, ruling out cancer requires an invasive biopsy. Dr. Vachani is testing whether a biomarker signature can be integrated into LDCT screening to improve the sensitivity of LDCT so that patients may be spared unnecessary biopsies.

Pilot study of SGLT2 in the characterization of early lung adenocarcinoma

Claudio Scafoglio, MD, PhD
University of California, Los Angeles
Los Angeles

The protein SGL2 seems to be produced in higher quantities on abnormal lung cells than on normal lung cells. Dr. Scafoglio is testing whether SGL2 can be used to image lung cancer cells by using a new imaging technology.

Lung cancer detection by CRISPR-based detection of circulating tumor DNA

This grant was funded in part by Schmidt Legacy Foundation and Upstage Lung Cancer
Edwin Yau, MD, PhD
Roswell Park Cancer Institute
Buffalo

Currently,  computed tomography (CT) is available as a tool for the early detection of lung cancer in high-risk individuals. Unfortunately, it has a high false-positive rate: less than 5% of people with nodules found through CT actually have lung cancer. Apart from the distress associated with false positives, individuals may have to undergo invasive procedures, such as a biopsy, to rule out lung cancer.

Circulating tumor DNA (ctDNA) is DNA released from dying cancer cells into the bloodstream. Individuals with early-stage lung cancer may have ctDNA in their blood, even when the cancer is localized. CRISPR-Cas technology is a novel DNA modifying tool that can be used to develop sensitive, specific, and economic ctDNA assays. Dr. Edwin Yau will develop a CRISPR-Cas-based blood test to detect ctDNA in the blood of individuals suspected of having lung cancer. While the immediate goal of the project is to evaluate this blood test in individuals who have already undergone a CT scan, the ultimate goal of the project is to develop a blood test for screening all individuals.

Intercept Lung Cancer Through Immune, Imaging & Molecular Evaluation-InTIME

Grant title (if any)
SU2C-LUNGevity Foundation-American Lung Association Lung Cancer Interception Dream Team
This grant was co-funded by Stand Up to Cancer, LUNGevity, and the American Lung Association
Avrum Spira, MD, MSc
Boston University
Boston
Steven Dubinett, MD
UCLA
Los Angeles
CA
Julie Brahmer, MD
Johns Hopkins Kimmel Cancer Center
Baltimore
MD
Sam Gambhir, MD, PhD
Stanford University
Palo Alto
CA
Matthew Meyerson, MD, PhD
Harvard/Dana-Farber Cancer Institute
Boston
MA
Charles Swanton, PhD
Francis Crick Institute
London, England

The SU2C-LUNGevity Foundation-American Lung Association Lung Cancer Interception Dream Team, led by LUNGevity SAB member Dr. Avrum Spira, is developing a combination of diagnostic tools, such as non-invasive nasal swabs, blood tests, and radiological imaging, to confirm whether lung abnormalities found on chest imaging are benign lung disease or lung cancer.

Integrated Blood-Based and Radiographic Interception of Lung Cancer

Grant title (if any)
SU2C-LUNGevity Foundation-American Lung Association Lung Cancer Interception Translational Research Team
This grant was co-funded by Stand Up to Cancer, LUNGevity, and the American Lung Association
Lecia Sequist, MD
Massachusetts General Hospital
Boston
Max Diehn, MD
Stanford University
Palo Alto
CA
Tilak Sundaresan, MD
Kaiser Permanente San Francisco
San Francisco
CA
Gad Getz, PhD
Broad Institute
Cambridge
MA

The SU2C-LUNGevity Foundation-American Lung Association Lung Cancer Interception Translational Research Team, headed by LUNGevity Scientific Advisory Board (SAB) member Dr. Lecia Sequist, is developing a lung cancer interception assay (LCIA) that can be used in conjunction with low-dose CT scans. This assay will be based on an integration of several blood-based assays that examine circulating tumor cells and circulating tumor DNA.

Genome Alterations Associated With Airway Premalignant Lesion Progression

Joshua Campbell, PhD
Boston University
Boston

One of the challenges for early detection and prevention of squamous cell lung cancer, a type of non-small cell lung cancer (NSCLC), is the lack of understanding of how premalignant lesions develop and progress to lung cancer. Dr. Campbell is studying how normal lung cells acquire changes in their DNA to form premalignant lesions. His ultimate goal is to develop a biomarker to predict development of squamous cell lung cancer.

Lung screening via biophotonic analysis of nanoarchitecture of buccal cells

This grant was funded in part by Upstage Lung Cancer
Vadim Backman, PhD
Northwestern University
Evanston
Ankit Bharat, MBBS
Northwestern University
Evanston
IL

Cells in the respiratory tract are usually stacked in an orderly fashion. As lung cancer develops, the cells get “un-stacked” and their shapes change, giving them the ability to grow and spread to other parts of the body. Dr. Vadim Backman from Northwestern University is utilizing a new technology called Partial Wave Spectroscopy for seeing those cells. With the LUNGevity Early Detection Award, he will check how cells taken from the cheeks of stage I lung cancer patients reflect these early changes with the ultimate goal of using partial wave spectroscopy technology for early detection of lung cancer.

Detecting early stage lung cancer with circulating tumor cells

Rajan Kulkarni, MD, PhD
Oregon Health and Science University (formerly at UCLA Medical Center)
Portland

Dr. Kulkarni is studying how circulating tumor cells (cancer cells that are released into the blood stream) can be used to develop a blood test for lung cancer early detection and treatment. Funding from LUNGevity will help him use a novel technology called the Vortex Chip to test two things: first, if lung cancer be detected early by identifying circulating tumor cells in the blood and second, if there are biomarkers in circulating tumor cells that can differentiate patients who will respond to immunotherapy or chemotherapy.

Blood Tests for the Early Detection of Lung Cancer

Protect Your Lungs/ LUNGevity Foundation Research Grant; funded in part by A Breath of Hope Foundation
Samir Hanash, MD, PhD
Fred Hutchinson Cancer Research Center
Seattle
Gary Goodman, MD
Fred Hutchinson Cancer Research Center
Seattle
WA
Christopher Li, MD, PhD
Fred Hutchinson Cancer Research Center
Seattle
WA

Never-smokers with lung cancer represent 15% of all lung cancer patients. However, never-smokers do not undergo computed tomography (CT) for screening. Dr. Samir Hanash and his team are identifying biomarkers in the blood of low-risk people. Their ultimate aim is to develop a blood test to screen never-smokers.

Combined Protein and miRNA Profiles for the Early Detection of Lung Cancer

Protect Your Lungs/ LUNGevity Foundation Research Grant; funded in part by A Breath of Hope Foundation
Steven M. Dubinett, MD
David Geffen School of Medicine at UCLA
Los Angeles
Krysan Kostyantyn, PhD
David Geffen School of Medicine at UCLA
Los Angeles
CA

Lung cancer cells produce different types of proteins and RNA molecules that circulate in the blood. Dr. Steven Dubinett and his team have discovered 17 unique miRNAs in the blood of lung cancer patients and other high-risk individuals, such as smokers. Blood of healthy and low-risk people do not have these miRNAs. They are developing an miRNA-based blood test to predict which high-risk individual might develop lung cancer.