Non-small cell lung cancer (NSCLC)

The most common type of lung cancer

Overcoming bypass signaling to enhance clinical responses in ALK-positive lung cancer

Partner Awards
Ibiayi Dagogo-Jack, MD
Massachusetts General Hospital
Boston
MA

Phase 1 first in-human clinical trial with a therapeutic ALK vaccine in patients with ALK+ NSCLC

Partner Awards
Grant title (if any)
ALK Positive/LUNGevity Lung Cancer Research Awards
Mark Awad, MD, PhD
Dana-Farber Cancer Institute
Boston
MA
Roberto Chiarle, MD
Harvard University
Cambridge
MA

Predictive biomarkers of radio-immunotherapeutic response in NSCLC

Career Development Award
Sean Pitroda, MD
The University of Chicago
Chicago
IL

Dr. Pitroda and his team will develop a biomarker signature that can predict which patients are the most likely to benefit from an immunotherapy-radiation therapy combination. The ultimate goal is to determine which patients are likely to benefit from this combination treatment.

Mechanisms of resistance to direct KRAS G12C inhibition

Career Development Award
Kathryn Arbour, MD
Memorial Sloan Kettering Cancer Center
New York
NY

Dr. Arbour will test a combination treatment regimen (MRTX849 for KRAS G12C and TNO155 for SHP2) in specialized mouse models of KRAS-mutant lung cancer, as well as analyze blood samples from patients who are currently receiving the MRTX849 drug to proactively monitor how these patients are developing resistance to MRTX849. Her ultimate goal is for new drugs, such as TNO155, to be added to the treatment regimen for KRAS-positive patients to combat acquired resistance. Dr. Arbour is the recipient of the Kristie Rolke Smith/LUNGevity Career Development Award, generously funded by the Rolke family in memory of their daughter, Kristie.

Lung cancer detection by CRISPR-based detection of circulating tumor DNA

Career Development Award
This grant was funded in part by Schmidt Legacy Foundation and Upstage Lung Cancer
Edwin Yau, MD, PhD
Roswell Park Cancer Institute
Buffalo
NY

Currently,  computed tomography (CT) is available as a tool for the early detection of lung cancer in high-risk individuals. Unfortunately, it has a high false-positive rate: less than 5% of people with nodules found through CT actually have lung cancer. Apart from the distress associated with false positives, individuals may have to undergo invasive procedures, such as a biopsy, to rule out lung cancer.

Circulating tumor DNA (ctDNA) is DNA released from dying cancer cells into the bloodstream. Individuals with early-stage lung cancer may have ctDNA in their blood, even when the cancer is localized. CRISPR-Cas technology is a novel DNA modifying tool that can be used to develop sensitive, specific, and economic ctDNA assays. Dr. Edwin Yau will develop a CRISPR-Cas-based blood test to detect ctDNA in the blood of individuals suspected of having lung cancer. While the immediate goal of the project is to evaluate this blood test in individuals who have already undergone a CT scan, the ultimate goal of the project is to develop a blood test for screening all individuals.

Development of markers to predict response to immunotherapy in NSCLC

Career Development Award
Jeffrey Thompson, MD
University of Pennsylvania
Philadelphia
PA

Currently, three immune checkpoint inhibitors are approved by the FDA for the treatment of a subset of advanced-stage NSCLC. However, immunotherapy is a costly treatment regimen and comes with a unique side effect profile because of the inhibitors’ ability to cause inflammatory tissue damage. At present, the PD-L1 protein is used as a biomarker to predict which patients may respond to immunotherapy. Unfortunately, presence or absence of PD-L1 protein may not be an accurate predictor of response. Dr. Jeffrey Thompson is studying how we can develop more accurate biomarker signatures that may not only predict response to immunotherapy but may also determine which patients will develop treatment-related side effects. He will develop a novel blood-based liquid biopsy approach that will enable doctors to predict which patients will respond to immunotherapy drugs.

Immunometabolic T cell profiling as a prognostic liquid biopsy in NSCLC

Career Development Award
Kellie Smith, PhD
Johns Hopkins School of Medicine
Baltimore
MD

Checkpoint inhibitors, a type of immunotherapy, are now available in the first-line and second-line settings for certain subsets of NSCLC patients. Furthermore, the U.S. Food and Drug Administration recently approved an immunotherapy-combination treatment regimen for the treatment of a subset of advanced-stage NSCLC patients. While we are making progress in combining and sequencing immunotherapy with other conventional treatments, it is still unclear which patients will respond to these combinations. Dr. Kellie Smith’s laboratory is studying immune cells in blood samples from patients who have received the recently approved combination therapy. She postulates that immune cells from patients receiving the combination behave very differently from immune cells from patients who have received single-agent immunotherapy. Dr. Smith’s team will identify and exploit these differences to develop a blood test that will help predict which patients may benefit from combination therapies, thereby sparing patients the exposure to ineffective treatments.

Targeting the Complement Pathway in ALK Positive Lung Cancer

Partner Awards
This grant was funded by ALK Positive
Raphael Nemenoff, PhD
University of Colorado Denver
Aurora
CO

Overcoming Innate Immune Resistance in ALK-Rearranged Lung Cancer

Partner Awards
This grant was funded by ALK Positive
Justin Gainor, MD
Massachusetts General Hospital
Boston
MA

Characterization of Anti-ALK Immunologic Responses in ALK-Positive NSCLC

Partner Awards
This grant was funded by ALK Positive
Mark Awad, MD, PhD
Dana-Farber Cancer Institute
Boston
MA