Non-small cell lung cancer (NSCLC)

The most common type of lung cancer

Intercept Lung Cancer Through Immune, Imaging & Molecular Evaluation-InTIME

SU2C-LUNGevity-ALA LC Interception Award
Grant title (if any)
SU2C-LUNGevity Foundation-American Lung Association Lung Cancer Interception Dream Team
This grant was co-funded by Stand Up to Cancer, LUNGevity, and the American Lung Association
Avrum Spira, MD, MSc
Boston University
Boston
MA
Steven Dubinett, MD
UCLA
Los Angeles
CA
Julie Brahmer, MD
Johns Hopkins Kimmel Cancer Center
Baltimore
MD
Sam Gambhir, MD, PhD
Stanford University
Palo Alto
CA
Matthew Meyerson, MD, PhD
Harvard/Dana-Farber Cancer Institute
Boston
MA
Charles Swanton, PhD
Francis Crick Institute
London, England

The SU2C-LUNGevity Foundation-American Lung Association Lung Cancer Interception Dream Team, led by LUNGevity SAB member Dr. Avrum Spira, is developing a combination of diagnostic tools, such as non-invasive nasal swabs, blood tests, and radiological imaging, to confirm whether lung abnormalities found on chest imaging are benign lung disease or lung cancer.

Integrated Blood-Based and Radiographic Interception of Lung Cancer

SU2C-LUNGevity-ALA LC Interception Award
Grant title (if any)
SU2C-LUNGevity Foundation-American Lung Association Lung Cancer Interception Translational Research Team
This grant was co-funded by Stand Up to Cancer, LUNGevity, and the American Lung Association
Lecia Sequist, MD
Massachusetts General Hospital
Boston
MA
Max Diehn, MD
Stanford University
Palo Alto
CA
Tilak Sundaresan, MD
Kaiser Permanente San Francisco
San Francisco
CA
Gad Getz, PhD
Broad Institute
Cambridge
MA

The SU2C-LUNGevity Foundation-American Lung Association Lung Cancer Interception Translational Research Team, headed by LUNGevity Scientific Advisory Board (SAB) member Dr. Lecia Sequist, is developing a lung cancer interception assay (LCIA) that can be used in conjunction with low-dose CT scans. This assay will be based on an integration of several blood-based assays that examine circulating tumor cells and circulating tumor DNA.

Overcoming heterogeneity and resistance in EGFR-mutant NSCLC

Career Development Award
Zofia Piotrowska, MD
Massachusetts General Hospital
Boston
MA

Targeted therapies have become a mainstay of treatment for non-small cell lung cancer patients whose tumors test positive for a targetable driver mutation. The EGFR mutation is one such targetable mutation. New third-generation EGFR inhibitors have recently entered the clinic and can be very effective therapies for some patients who develop resistance to first- and second-generation EGFR inhibitors. Unfortunately, we are now seeing that cancer cells can also learn how to outsmart these third-generation inhibitors, and new and more effective treatments are needed. Dr. Zofia Piotrowska is studying how lung cancer cells become resistant to third-generation EGFR inhibitors, such as osimertinib, and how the heterogeneity of EGFR-mutant lung cancers can contribute to resistance to drugs like osimertinib. During the period of this award, Dr. Piotrowska will also be conducting a clinical trial testing a novel drug combination developed to prevent or delay the development of drug resistance among patients with EGFR-mutant lung cancer.

Dynamics of neoantigen landscape during immunotherapy in lung cancer

Career Development Award
This grant was funded in part by the Schmidt Legacy Foundation
Valsamo Anagnostou, MD, PhD
Johns Hopkins University
Baltimore
MD

The lung cancer treatment landscape is rapidly evolving with the advent of immunotherapy. Checkpoint inhibitors, a class of immune-targeted agents, are now available in both the first-line and second-line settings for certain subsets of lung cancer patients. However, the fraction of patients achieving a durable response remains low and, even among patients who respond, the majority develop resistance. Dr. Valsamo Anagnostou is using a comprehensive approach employing genome-wide and functional immune analyses to identify mechanisms of resistance to immune checkpoint blockade. In addition, she is developing a blood-based molecular assay utilizing serial blood samples of lung cancer patients to more accurately predict response and resistance to these therapies.

Identification of predictive markers of toxicity to immunotherapy

Career Development Award
This grant was funded in part by the Schmidt Legacy Foundation
Mehmet Altan, MD
The University of Texas MD Anderson Cancer Center
Houston
TX

Side effects associated with immunotherapy (immune-related adverse events or irAEs) with checkpoint inhibitors are different from those seen in other treatment approaches, such as chemotherapy, radiation therapy, and targeted therapies. Their onset is unpredictable, so irAEs require different side-effect management strategies. Dr. Altan is studying how we can predict which patients will develop irAEs so that the best therapy can be selected and symptom management can be proactive.

Optical Imaging for Early Lung Cancer Diagnosis

Career Development Award
Lida Hariri, MD, PhD
Massachusetts General Hospital/Harvard University
Boston
MA

A tissue biopsy is often required to make a definitive diagnosis of lung cancer. However, because of small size and inadequate biopsy yield, early-stage lung cancer is often difficult to diagnose. Dr. Hariri is using a novel imaging technique called optical coherence tomography (OCT) to develop tools to guide tissue biopsy sampling to improve tissue yield. These tools will also provide additional diagnostic information.

Genome Alterations Associated With Airway Premalignant Lesion Progression

Career Development Award
Joshua Campbell, PhD
Boston University
Boston
MA

One of the challenges for early detection and prevention of squamous cell lung cancer, a type of non-small cell lung cancer (NSCLC), is the lack of understanding of how premalignant lesions develop and progress to lung cancer. Dr. Campbell is studying how normal lung cells acquire changes in their DNA to form premalignant lesions. His ultimate goal is to develop a biomarker to predict development of squamous cell lung cancer.

Axl as a target to reverse EMT, treatment resistance and immunosuppression

Targeted Therapeutics Research Award
Lauren Averett Byers, MD
MD Anderson Cancer Center
Houston
TX
Don Gibbons, Jr., MD, PhD
MD Anderson Cancer Center
Houston
TX

Drs. Byers and Gibbons have discovered that lung cancer cells acquire the ability to hide from the immune system during epithelial-to-mesenchymal transition—a process through which cancer cells develop the ability to spread to other parts of the body (metastasis). The LUNGevity award will help Drs. Byers and Gibbons study the effect of a new drug that can reverse the EMT process and make lung cancer cells more visible to the immune system.

Lung screening via biophotonic analysis of nanoarchitecture of buccal cells

Early Detection Research Award
This grant was funded in part by Upstage Lung Cancer
Vadim Backman, PhD
Northwestern University
Evanston
IL
Ankit Bharat, MBBS
Northwestern University
Evanston
IL

Cells in the respiratory tract are usually stacked in an orderly fashion. As lung cancer develops, the cells get “un-stacked” and their shapes change, giving them the ability to grow and spread to other parts of the body. Dr. Vadim Backman from Northwestern University is utilizing a new technology called Partial Wave Spectroscopy for seeing those cells. With the LUNGevity Early Detection Award, he will check how cells taken from the cheeks of stage I lung cancer patients reflect these early changes with the ultimate goal of using partial wave spectroscopy technology for early detection of lung cancer.

Dissecting novel mechanisms of lung cancer pathogenesis

Career Development Award
Kathryn O’Donnell, PhD
UT Southwestern Medical Center
Dallas
TX

Dr. O’Donnell has discovered that lung cancer cells make a protein called PCDH7 that is present on the surface of cancer cells where it may be accessible to therapies. In cooperation with the KRAS protein, the PCDH7 protein relays signals from outside the cell to make cancer cells grow faster. She is studying the function of the PCDH7 protein and developing strategies to reduce its effect on the KRAS pathway.