Non-small cell lung cancer (NSCLC)

The most common type of lung cancer

Neoadjuvant anti-PD-1 antibody, Nivolumab, in resectable NSCLC

Patrick Forde, MD (MB, BCh)
Johns Hopkins Kimmel Cancer Center
Baltimore

Dr. Forde is working to apply a kind of immunotherapy that has been successful in people with lung cancer in later stages to people with early-stage lung cancer, stimulating their immune system to attack cancer cells. This treatment, nivolumab, uses anti PD-1 antibodies to release the “brakes” on the immune system.

In-vivo and in-vitro diagnostics to improve lung cancer care

Viswam S. Nair, MD
Stanford University
Stanford

Dr. Nair is developing a blood test to help determine whether a pulmonary nodule seen on a PET-scan imaging screen is cancerous. The goal of this test, which will make use of circulating molecular biomarkers, is to accurately determine which patients are most likely to have lung cancer and, therefore, should have biopsies or surgery.

 

Molecular predictors of outcome in non-small cell lung cancer

Christopher A. Maher, PhD
Washington University in St. Louis
St. Louis

Dr. Maher is working to improve on the accuracy and usability of tests that identify lung cancer patients who are likely to relapse. He is using next-generation sequencing techniques to develop a signature set of key genetic changes  and convert it to a clinical test that will be able to predict who is at high risk for relapse.

 

Developing new non-invasive methods for the diagnosis of lung cancer

Mohamed Hassanein, PhD
Vanderbilt University Medical Center
Nashville

Dr. Hassanein is using 164 proteins found only in lung cancer patients to develop a method to test the patient’s blood for its own antibodies to these proteins. His goal is to use these proteins as biomarkers in a blood test that will find lung cancer in its earliest, most treatable stage.

 

Biomarkers of pre-malignant disease progression for lung cancer detection

Jennifer Beane, PhD
Boston University
Boston
Dr. Beane will characterize how RNA expression in normal airway epithelial cells is affected by the presence of precancerous lesions and identify changes that predict if the lesions will become malignant or return to normal. Identifying these key molecular changes will contribute to early detection and possible chemo-prevention of lung cancer in high risk patients.

Targeting KRAS mutations in lung cancer

Frank J. Slack, PhD
Beth Israel Deaconess Medical Center
Boston
Hai Tran, PharmD
University of Texas M.D. Anderson Cancer Center
Houston
TX
Joanne Weidhaas, MD, PhD
David Geffen School of Medicine at UCLA
Los Angeles
CA

Dr. Slack is studying the KRAS-variant, a recently discovered KRAS mutation found in over 20% of  NSCLC patients, which has been shown to predict a patient’s response to cancer treatment. His research aims to confirm the role of the KRAS-variant to direct cancer therapy for lung cancer patients and as a potential future target for therapy.

 

Determining mechanisms of resistance to next-generation EGFR inhibitors

Lecia V. Sequist, MD
Massachusetts General Hospital
Boston
Jeffrey Engelman, MD, PhD
Massachusetts General Hospital
Boston
MA
Joel Neal, MD, PhD
Stanford University
Stanford
CA

Dr. Sequist will develop models that explain how NSCLC patients can acquire drug resistance to targeted therapies after a period of initial successful treatment, leading to the development of new treatments to help patients overcome the drug resistance.

 

Identification of biomarkers for the detection of small cell lung cancer

Ignacio I. Wistuba, MD
University of Texas MD Anderson Cancer Center
Houston
Humam Kadara, PhD
University of Texas MD Anderson Cancer Center
Houston
TX

Dr. Wistuba and his colleague Dr. Humam Kadara are identifying biomarkers that could ultimately lead to the fist test to detect small cell lung cancer in its earliest and most treatable stages.

 

Biomarkers for targeted lung cancer chemoprevention

Meredith Tennis, PhD
University of Colorado Denver
Denver

Dr. Tennis aims to identify biomarkers that signal whether a patient is likely to benefit from iloprost and pioglitazone, two drugs that have demonstrated promise in reducing NSCLC risk, and determine whether they work in a clinical trial setting.

 

Biomarkers for NSCLC radiosensitization by proteasome inhibition

David E. Kozono, MD, PhD
Dana-Farber Cancer Institute
Boston

Dr. Kozono is studying which genetic types of lung cancer are the most resistant to radiation, and which of these may be best treated with a combination of radiation and bortezomib, a drug already FDA-approved for another type of cancer.