Immune checkpoint inhibitors

Drugs that either "uncloak" cancer cells or "unchain" immune cells so the immune system can mount a response against the cancer

Role of KIRs in Regulating Anti-tumor Immunity and Autoimmunity

Diane Tseng, MD, PhD
University of Washington and Fred Hutchinson Cancer Center
Seattle

Checkpoint immunotherapy has advanced treatment of NSCLC, but the majority of patients do not experience long-term disease control and are at risk for autoimmune-related side effects.  In this study, Dr. Tseng will examine specialized cells called CD8+ T that express receptors (KIR+) that suppress autoimmunity to understand how these cells regulate the immune system’s cancer-fighting ability during checkpoint immunotherapy treatment.  Insights gained from this study could result in better strategies for improving efficacy while decreasing immune-related side effects.

Randomized Phase II Trial of Iadademstat with ICI Maintenance in SCLC

Noura Choudhury, MD
Memorial Sloan Kettering Cancer Center
New York

Small cell lung cancer (SCLC) is difficult to treat, and most patients diagnosed have a poor prognosis. Most patients with SCLC treated with first line chemoimmunotherapy progress within months of immune checkpoint inhibitor (ICI) maintenance therapy. Previous studies in mice have revealed that SCLC treated with iadademstat and maintenance ICI shows enhanced tumor response compared to ICI alone. Dr. Choudhury will conduct a phase II randomized trial investigating this combination in patients with SCLC versus standard of care ICI alone to evaluate progression free survival.

Tumor draining lymph node immunomodulation to decrease recurrence in NSCLC

Jonathan Villena-Vargas, MD
Weill Medical College of Cornell University
New York

Lymph nodes are small structures that work as filters for foreign substances, such as cancer cells and infections. These nodes contain infection-fighting immune cells that are carried in through the lymph fluid. This project will study the lymph node draining basin, which is involved in the spread of a tumor from the original location site to distant sites, and whether activating cancer-fighting T-cells can decrease recurrence in NSCLC.  Dr. Villena-Vargas will use animal models to investigate whether immune checkpoint inhibitors enhance lymph node T-cells memory, which increases their ability to recognize cancer cells in the bod and can prevent metastatic recurrence.

Synergistic expression of combined RT and dual-immune checkpoint blockade

Rebecca Shulman, MD
The Research Institute of Fox Chase Cancer Center
Philadelphia

Recent studies have shown that high and low dose radiation used in combination with immunotherapy have a synergistic effect in modulating the growth of satellite tumors, which are tumor cells located near the primary tumor.  In this study, Dr. Shulman proposes using an animal model of metastatic lung cancer to test the hypothesis that radiation given in repeated very low dose pulses in combination with immunotherapy can further enhance immunotherapeutic benefit in metastatic lung cancer.

Isotoxic hypofractionation to personalize radiation for NSCLC

Lucas Vitzthum, MD
Stanford University/VA Palo Alto
Palo Alto

The purpose of this study is to develop and evaluate a method for personalized radiation therapy in patients with locally advanced NSCLC. Patients will be assessed regarding their expected risk of treatment toxicity, and those at lower risk will be treated in a fewer number of treatments with a more intensified dose of radiation. If successful, this could be used to inform optimal radiation treatment protocols as well as potentially reduce treatment and financial burden for patients, with a major impact on quality of life.

Predicting clinical benefit of immunotherapy in veterans

Alex Bryant, MD
University of Michigan/VA Ann Arbor Healthcare System
Ann Arbor

This study will use data from the Veterans Affairs system to develop statistical models to predict response to immunotherapy in patients with lung cancer. While immunotherapy has improved outcomes for many patients, it is still not well understood why some respond well and others do not.  If successful, this work will produce a comprehensive prediction model of immunotherapy benefit in lung cancer that could be used to counsel patients, inform patient-physician decision making, and identify patients who need more- or less-aggressive treatment.

Combination checkpoint blockade plus VEGF inhibitor in EGFR-mutated NSCLC

This grant was funded in part by The Huff Project
Joshua Reuss, MD
Georgetown University
Washington

Osimertinib is the standard of care for treating non-small cell lung cancer with EGFR mutations. Unfortunately, the tumors inevitably develop resistance to osimertinib. Currently, very few treatment options exist for patients whose cancers have become resistant to osimertinib. Dr. Reuss is conducting a phase 2 clinical trial to test whether two immunotherapy drugs, atezolizumab and tiragolumab, given with a VEGF inhibitor, bevacizumab, are effective in controlling EGFR-positive NSCLC that has become resistant to osimertinib.

Phase 2 trial of neoadjuvant KRAS G12C directed therapy in resectable NSCLC

Kristen Marrone, MD
Johns Hopkins School of Medicine
Baltimore

Around one in three patients with non-small cell lung cancer are diagnosed with early-stage disease, where surgery is offered as curative therapy. Unfortunately, the cancer can recur in 50%-60% of patients. The rate of recurrence is higher in patients whose tumors have certain mutations, such as mutations in the KRAS gene. Dr. Marrone and her team will be conducting a phase 2 trial to test whether treatment with a KRAS G12C blocking drug, adagrasib, given as a single drug or in combination with an immunotherapy drug, nivolumab, before a patient undergoes surgery can delay or prevent recurrence in patients whose tumors have a KRAS G12C mutation.

Addressing hepatic siphoning to enhance immunotherapy efficacy in veterans

Michael Green, MD
University of Michigan/Veterans Affairs Ann Arbor Healthcare System
Ann Arbor

Innate immunity as a mechanism of TKI resistance in fusion-driven NSCLC

This grant was funded in part by The Huff Project
Erin Schenk, MD, PhD
University of Colorado
Boulder

Fusion-driven NSCLC is a group of lung cancers that are driven by specific changes in oncogenes. These lung cancers tend to be addicted to these oncogenes. Such fusion-driven NSCLCs are treated with targeted therapies that block the effect of the oncogenes. However, the cancer inevitably comes back because the tumors become resistant. Traditionally, fusion-driven NSCLCs have not been successfully treated with immunotherapy. Dr. Schenk is testing how these cancers can be treated with immunotherapy through another immune pathway—the innate immunity pathway.