Adenocarcinoma

 The most common subtype of NSCLC

Targeting CD74 to Overcome Resistance to EGFR Inhibitors in Lung Cancer

Partner Awards
Grant title (if any)
EGFR Resisters/LUNGevity Lung Cancer Research Award
Susumu Kobayashi, MD, PhD
Beth Israel Deaconess Medical Center
Boston
MA

Tyrosine kinase inhibitors (TKI) are a class of drugs that are used to treat EGFR NSCLC. These drugs eventually stop working and some cancer cells called drug-tolerant persisters (DTPs) are implicated in this resistance.  Dr. Kobayashi and his team have found that a protein called CD74 plays a role in developing a resistance to osimertinib.  In this project, he will investigate whether CD74-expressing cells allow for the development of DTPs and if inhibition of CD74 by combining an antibody-drug conjugate (CD74-MMAE) with osimertinib, prevents resistance. If successful, this has the potential to significantly impact the survival of EGFR patients by allowing them to stay on osimertinib for a longer duration.

Integration of Liquid Biopsy Assays for the Early Detection of Lung Cancer

Early Detection Research Award
Maximilian Diehn, MD, PhD
Stanford University
Stanford
CA

Lung cancer is the number one cause of cancer-related deaths in the US because it is often found only after it has spread to other organs in the body, decreasing the likelihood of surviving at least 5 years after diagnosis.  Only 21% of patients are diagnosed then their lung cancer is early stage, when it is most treatable.  The goal of this project is to create a new way to screen for lung cancer using a blood sample that can find early stage disease when patients can still be treated and/or cured.  In preliminary work, Dr. Diehn has developed a blood test that can identify tiny amounts of DNA from lung cancer cells and in this study he will improve this test and apply it to patients and healthy controls.  If successful, Dr. Diehn’s work has the potential to significantly improve early detection of lung cancer and improve outcomes for patients.

Role of the RNA Modifier METTL3 in Lung Cancer

Health Equity and Inclusiveness Research Fellow Award
Maria Trovero, PhD
Boston Children's Hospital
Boston
MA

In this project, Dr. Trovero will study the role of METTL3, an RNA modifying protein that is thought to promote tumor initiation and progression.   She will evaluate the function of METTL3 by increasing or decreasing its activity in vivo.  Results from this study will help establish METTL3 as a possible therapeutic target for lung cancer, and pave the way for understanding the relationship between RNA modifiers and cancer biology.

TROP2 Directed CAR T in NSCLC as a Strategy for Eradicating Persister MRD

Health Equity and Inclusiveness Research Fellow Award
Elliott Brea, MD, PhD
Dana-Farber Cancer Institute
Boston
MA

This project proposes to develop novel therapeutic approaches to treat advanced EGFR-mutant NSCLC. CAR-T cell therapy is a type of immunotherapy treatment that uses genetically altered T cells to find and destroy cancer cells more effectively.  TROP2 is a protein that is over expressed on the surface of NSCLC and is a target of the antibody-drug conjugate (ADC), sacitizumab-govitecan, which is FDA-approved to treat other solid tumors. Dr. Brea hypothesizes that TROP2-directed CAR-T targeting of EGFR-mutant NSCLC will be superior to standard Osimertinib treatment.

Role of KIRs in Regulating Anti-tumor Immunity and Autoimmunity

Career Development Award
Diane Tseng, MD, PhD
University of Washington and Fred Hutchinson Cancer Center
Seattle
WA

Checkpoint immunotherapy has advanced treatment of NSCLC, but the majority of patients do not experience long-term disease control and are at risk for autoimmune-related side effects.  In this study, Dr. Tseng will examine specialized cells called CD8+ T that express receptors (KIR+) that suppress autoimmunity to understand how these cells regulate the immune system’s cancer-fighting ability during checkpoint immunotherapy treatment.  Insights gained from this study could result in better strategies for improving efficacy while decreasing immune-related side effects.

The Germline-Somatic Interaction in Young-Onset Lung Cancer

Career Development Award
This grant was funded in part by Lung Cancer Initiative
Jaclyn LoPiccolo, MD, PhD
Dana-Farber Cancer Institute
Boston
MA

Although the average age at diagnosis is 70, thousands of new patients under 45 are diagnosed with lung cancer every year, most of whom have never smoked.  Dr. LoPiccolo hypothesizes that these patients may share inherited genetic changes that predispose them to developing lung cancer at a younger age.  In a preliminary analysis of young-onset lung cancer patients, Dr. LoPiccolo has found that approximately 30% of these patients carry rare mutations in known cancer-associated genes.  In this study, Dr. LoPiccolo will investigate whether these mutations affect response to targeted or immune-based therapies.  This insight is likely to identify risk factors among young lung cancer patients, which could lead to improved screening and treatment options for this population.

Gilteritinib for lorlatinib-resistant ALK NSCLC

Partner Awards
Grant title (if any)
ALK Positive/LUNGevity Lung Cancer Research Awards
Angel Qin, MD
University of Michigan
Ann Arbor
MI

Lorlatinib is currently the only approved treatment for patients with ALK-positive NSCLC whose cancers have progressed on prior ALK drugs, and for those whose tumors develop resistance, there is a lack of other treatment options other than chemotherapy. In this study, Dr. Qin will evaluate a novel drug called gilteritinib as a treatment in patients with ALK-positive NSCLC whose tumors have developed a resistance to lorlatinib.

 

Development of ALK-specific TCR-T cells for the eradication of ALK+ NSCLC

Partner Awards
Grant title (if any)
ALK Positive/LUNGevity Lung Cancer Research Awards
Roberto Chiarle, MD
Boston Children’s Hospital/Harvard Medical School
Boston
MA

In this project, Dr. Chiarle and his team will generate T cells that have engineered receptors, called TCR receptors (TCR-T cells), that will selectively target and attack the ALK protein that is expressed by tumor cells. Generation of such cells could be a powerful tool to eradicate ALK+ lung cancer cells and form the basis of a TCR-T cell-based clinical trial for patients with TKI-resistant ALK+ NSCLC.

Defining and novel therapeutic targeting of ALK fusion protein granules

Partner Awards
Grant title (if any)
ALK Positive/LUNGevity Lung Cancer Research Awards
Trever Bivona, MD, PhD
University of California, San Francisco
San Francisco
CA

Currently available ALK inhibitors are an effective treatment for lung cancer, but tumors can development treatment resistance. In this project, Dr. Bivona will explore a novel way to treat ALK-positive lung cancer by targeting “membraneless cytoplasmic protein granules,” a new mechanism of signaling in ALK-positive lung cancer. His team will use precision medicine approaches that are complementary to current ALK inhibitors and that could improve their efficacy as well as quality of life for patients. 

Tumor draining lymph node immunomodulation to decrease recurrence in NSCLC

Health Equity and Inclusiveness Junior Investigator Award
Jonathan Villena-Vargas, MD
Weill Medical College of Cornell University
New York
NY

Lymph nodes are small structures that work as filters for foreign substances, such as cancer cells and infections. These nodes contain infection-fighting immune cells that are carried in through the lymph fluid. This project will study the lymph node draining basin, which is involved in the spread of a tumor from the original location site to distant sites, and whether activating cancer-fighting T-cells can decrease recurrence in NSCLC.  Dr. Villena-Vargas will use animal models to investigate whether immune checkpoint inhibitors enhance lymph node T-cells memory, which increases their ability to recognize cancer cells in the bod and can prevent metastatic recurrence.