Stage III

A stage in which the lung tumor can be any size, and more than one tumor may be within the same lung. The cancer may have spread to other parts 

Lung cancer detection by CRISPR-based detection of circulating tumor DNA

Career Development Award
This grant was funded in part by Schmidt Legacy Foundation and Upstage Lung Cancer
Edwin Yau, MD, PhD
Roswell Park Cancer Institute
Buffalo
NY

Currently,  computed tomography (CT) is available as a tool for the early detection of lung cancer in high-risk individuals. Unfortunately, it has a high false-positive rate: less than 5% of people with nodules found through CT actually have lung cancer. Apart from the distress associated with false positives, individuals may have to undergo invasive procedures, such as a biopsy, to rule out lung cancer.

Circulating tumor DNA (ctDNA) is DNA released from dying cancer cells into the bloodstream. Individuals with early-stage lung cancer may have ctDNA in their blood, even when the cancer is localized. CRISPR-Cas technology is a novel DNA modifying tool that can be used to develop sensitive, specific, and economic ctDNA assays. Dr. Edwin Yau will develop a CRISPR-Cas-based blood test to detect ctDNA in the blood of individuals suspected of having lung cancer. While the immediate goal of the project is to evaluate this blood test in individuals who have already undergone a CT scan, the ultimate goal of the project is to develop a blood test for screening all individuals.

Development of markers to predict response to immunotherapy in NSCLC

Career Development Award
Jeffrey Thompson, MD
University of Pennsylvania
Philadelphia
PA

Currently, three immune checkpoint inhibitors are approved by the FDA for the treatment of a subset of advanced-stage NSCLC. However, immunotherapy is a costly treatment regimen and comes with a unique side effect profile because of the inhibitors’ ability to cause inflammatory tissue damage. At present, the PD-L1 protein is used as a biomarker to predict which patients may respond to immunotherapy. Unfortunately, presence or absence of PD-L1 protein may not be an accurate predictor of response. Dr. Jeffrey Thompson is studying how we can develop more accurate biomarker signatures that may not only predict response to immunotherapy but may also determine which patients will develop treatment-related side effects. He will develop a novel blood-based liquid biopsy approach that will enable doctors to predict which patients will respond to immunotherapy drugs.

Immunometabolic T cell profiling as a prognostic liquid biopsy in NSCLC

Career Development Award
Kellie Smith, PhD
Johns Hopkins School of Medicine
Baltimore
MD

Checkpoint inhibitors, a type of immunotherapy, are now available in the first-line and second-line settings for certain subsets of NSCLC patients. Furthermore, the U.S. Food and Drug Administration recently approved an immunotherapy-combination treatment regimen for the treatment of a subset of advanced-stage NSCLC patients. While we are making progress in combining and sequencing immunotherapy with other conventional treatments, it is still unclear which patients will respond to these combinations. Dr. Kellie Smith’s laboratory is studying immune cells in blood samples from patients who have received the recently approved combination therapy. She postulates that immune cells from patients receiving the combination behave very differently from immune cells from patients who have received single-agent immunotherapy. Dr. Smith’s team will identify and exploit these differences to develop a blood test that will help predict which patients may benefit from combination therapies, thereby sparing patients the exposure to ineffective treatments.

Integrated Blood-Based and Radiographic Interception of Lung Cancer

SU2C-LUNGevity-ALA LC Interception Award
Grant title (if any)
SU2C-LUNGevity Foundation-American Lung Association Lung Cancer Interception Translational Research Team
This grant was co-funded by Stand Up to Cancer, LUNGevity, and the American Lung Association
Lecia Sequist, MD
Massachusetts General Hospital
Boston
MA
Max Diehn, MD
Stanford University
Palo Alto
CA
Tilak Sundaresan, MD
Kaiser Permanente San Francisco
San Francisco
CA
Gad Getz, PhD
Broad Institute
Cambridge
MA

The SU2C-LUNGevity Foundation-American Lung Association Lung Cancer Interception Translational Research Team, headed by LUNGevity Scientific Advisory Board (SAB) member Dr. Lecia Sequist, is developing a lung cancer interception assay (LCIA) that can be used in conjunction with low-dose CT scans. This assay will be based on an integration of several blood-based assays that examine circulating tumor cells and circulating tumor DNA.

Axl as a target to reverse EMT, treatment resistance and immunosuppression

Targeted Therapeutics Research Award
Lauren Averett Byers, MD
MD Anderson Cancer Center
Houston
TX
Don Gibbons, Jr., MD, PhD
MD Anderson Cancer Center
Houston
TX

Drs. Byers and Gibbons have discovered that lung cancer cells acquire the ability to hide from the immune system during epithelial-to-mesenchymal transition—a process through which cancer cells develop the ability to spread to other parts of the body (metastasis). The LUNGevity award will help Drs. Byers and Gibbons study the effect of a new drug that can reverse the EMT process and make lung cancer cells more visible to the immune system.

The Occurrence of Lung Cancer After Surgical Resection: Impact of New Staging System, Use of Adjuvant Chemotherapy and Value of Chest CT Versus Chest Radiograph

Targeted Therapeutics Research Award
Funded by LUNGevity Foundation in collaboration with The CHEST Foundation, the philanthropic arm of the American College of Chest Physicians
Alexei V. Bogolioubov, MD
Memorial Sloan Kettering Cancer Center
New York
NY

Surgery is often recommended for patients who have localized lung cancer. Dr. Bogolioubov is analyzing how fast lung cancer comes back after surgery to remove the primary tumor. He is also evaluating the role of chest CT radiography for post-operative follow-up.

Molecular signatures to predict response in neoadjuvant chemoradiation therapy of Stage III NSCLC patients

Targeted Therapeutics Research Award
LUNGevity Foundation/Respiratory Health Association of Chicago Research Grant
Jeffrey A. Borgia, PhD
Rush University Medical Center
Chicago
IL

Dr. Borgia is developing a process based on biomarkers derived from tissue and clinical factors such as age, smoking history, histology, and stage of diagnosis of lung cancer. This process will identify which patients with advanced-stage lung cancer will respond to medical treatment and thus qualify for surgery that potentially could cure the cancer.

Biomarkers for personalizing adjuvant therapy in NSCLC – increasing cures

Targeted Therapeutics Research Award
David P. Carbone, MD, PhD
The Ohio State University
Columbus
OH
John Minna, MD
University of Texas Southwestern Medical Center
Dallas
TX
Ignacio Wistuba, MD
University of Texas MD Anderson Cancer Center
Houston
TX

Patients with stage I and II lung cancer usually undergo surgery to treat their cancer. Sometimes, the cancer comes back. Using chemotherapy with surgery can prevent the cancer’s return. Dr. Carbone is studying how we can identify which stage I and II patients may benefit from chemotherapy.

A system biology approach to biomarkers for early detection of lung cancer

Early Detection Research Award
This grant was funded in part by Thomas G. Labrecque Foundation
Suzanne Miyamoto, PhD
University of California Davis
Sacramento
CA
Oliver Fiehn, PhD
University of California Davis
Sacramento
CA
Karen Kelly, MD
University of California Davis
Sacramento
CA

Biomarker-based tests that complement CT will make it easier to detect lung cancer early. These tests should also be useful for both high-risk (current and former smokers) and low-risk (never-smokers) populations. Dr. Suzanne Miyamoto and her team are studying different protein, fat, and sugar molecules made by lung cancer cells. These different molecules can also be found in the blood of lung cancer patients. Their ultimate goal is to develop a blood test for the early detection of lung cancer.

Biomarkers to improve clinical assessment of indeterminate lung nodules

Early Detection Research Award
York Miller, MD
University of Colorado Denver, AMC and DC
Aurora
CO
Wilbur Franklin, MD
University of Colorado Denver, AMC and DC
Aurora
CO
Kavita Garg, MD
University of Colorado Denver, AMC and DC
Aurora
CO

Computed tomography (CT) has a high false-positive rate. Less than 5% of people with nodules found through CT actually have lung cancer. Cells from benign nodules differ from malignant ones in two ways: they have a normal number of chromosomes and they make the same proteins as normal lung cells. Dr. York Miller is taking advantage of these differences. His team is developing a sputum-based test to determine whether a nodule is malignant or benign. The test will help decide whether the nodule requires follow-up.