Molecular profile or molecular testing

Laboratory tests that help decide course of treatment 

MiRNA expression profiling to predict recurrence after resection of stage I NSCLC

Targeted Therapeutics Research Award
National Lung Cancer Partnership/LUNGevity Foundation Research Grant
Sai Yendamuri, MD
State University of New York at Buffalo
Buffalo
NY

Dr. Yendamuri is conducting a clinical trial among stage-1 non-small cell lung cancer patients to confirm a microRNA signature for the prediction of the recurrence of lung cancer after surgery.  He then will develop a blood-based microRNA profile for the detection of lung cancer recurrence.

Combined Protein and miRNA Profiles for the Early Detection of Lung Cancer

Early Detection Research Award
Protect Your Lungs/ LUNGevity Foundation Research Grant; funded in part by A Breath of Hope Foundation
Steven M. Dubinett, MD
David Geffen School of Medicine at UCLA
Los Angeles
CA
Krysan Kostyantyn, PhD
David Geffen School of Medicine at UCLA
Los Angeles
CA

Lung cancer cells produce different types of proteins and RNA molecules that circulate in the blood. Dr. Steven Dubinett and his team have discovered 17 unique miRNAs in the blood of lung cancer patients and other high-risk individuals, such as smokers. Blood of healthy and low-risk people do not have these miRNAs. They are developing an miRNA-based blood test to predict which high-risk individual might develop lung cancer.

Folate-related biomarkers as predictors of response to pemetrexed therapy

Targeted Therapeutics Research Award
Alexander Steven Whitehead, DPhil
University of Pennsylvania
Philadelphia
PA

Pemetrexed is a chemotherapy drug commonly used for the treatment of non-small cell lung cancer. The drug blocks two proteins called DHFR and TS that cancer cells need to grow. Not all patients respond to pemetrexed. Dr. Alexander Whitehead is studying how changes in the DHFR and TS genes predict response of non-small cell lung cancer patients to pemetrexed.

Predictive blood-based markers of response to VEGF inhibitors in NSCLC

Targeted Therapeutics Research Award
A Breath of Hope Lung Foundation
John V. Heymach, MD, PhD
University of Texas MD Anderson Cancer Center
Houston
TX
David Carbone, MD, PhD
The Ohio State University
Columbus
OH

Cancer cells make chemicals that attract blood vessels. This process is known as angiogenesis. Drugs that inhibit angiogenesis are already being used to treat lung cancer patients. Unfortunately, not all patients respond to angiogenesis inhibitors. Dr. John Heymach is studying what determines whether a patient will respond.

Identifying Tumor Genomic Changes in Lung Cancers

Targeted Therapeutics Research Award
This grant was funded in part by Upstage Lung Cancer
Rebecca Heist, MD, MPH
Massachusetts General Hospital
Boston
MA
Anthony Iafrate, MD
Massachusetts General Hospital
Boston
MA
William Pao, MD, PhD
Vanderbilt University
Nashville
TN

Targeted therapies have shown great promise. However, up to 40% of patients with lung cancer do not test positive for a known target. Dr. Rebecca Heist is studying this group of patients and using DNA sequencing technology to identify novel targets for treatment.

Examining LKB1 status as a biomarker for response of lung cancer to metformin

Targeted Therapeutics Research Award
Edward Gabrielson, MD
Johns Hopkins University School of Medicine
Baltimore
MD

Metformin is an FDA-approved drug for the treatment of diabetes. Dr. Edward Gabrielson and his colleagues have found that a gene called LKB1 is altered in 40% of lung cancer patients. He is studying whether lung cancer cells with mutations in LKB1 are sensitive to metformin. His ultimate goal is to use an already-approved drug for the treatment of LKB1-positive lung cancers.

Biomarkers for personalizing adjuvant therapy in NSCLC – increasing cures

Targeted Therapeutics Research Award
David P. Carbone, MD, PhD
The Ohio State University
Columbus
OH
John Minna, MD
University of Texas Southwestern Medical Center
Dallas
TX
Ignacio Wistuba, MD
University of Texas MD Anderson Cancer Center
Houston
TX

Patients with stage I and II lung cancer usually undergo surgery to treat their cancer. Sometimes, the cancer comes back. Using chemotherapy with surgery can prevent the cancer’s return. Dr. Carbone is studying how we can identify which stage I and II patients may benefit from chemotherapy.

Biomarkers to improve clinical assessment of indeterminate lung nodules

Early Detection Research Award
York Miller, MD
University of Colorado Denver, AMC and DC
Aurora
CO
Wilbur Franklin, MD
University of Colorado Denver, AMC and DC
Aurora
CO
Kavita Garg, MD
University of Colorado Denver, AMC and DC
Aurora
CO

Computed tomography (CT) has a high false-positive rate. Less than 5% of people with nodules found through CT actually have lung cancer. Cells from benign nodules differ from malignant ones in two ways: they have a normal number of chromosomes and they make the same proteins as normal lung cells. Dr. York Miller is taking advantage of these differences. His team is developing a sputum-based test to determine whether a nodule is malignant or benign. The test will help decide whether the nodule requires follow-up.

Identifying germline risk mutations for early-onset and familial NSCLC

Early Detection Research Award
Zeynep H. Gümüş, PhD
Icahn School of Medicine at Mount Sinai
New York
NY
Steven M. Lipkin, MD, PhD
Joan & Sanford I. Weill Medical College of Cornell University
New York
NY
Kenneth Offit, MD, MPH
Memorial Sloan Kettering Cancer Center
New York
NY
Each year, more than 22,000 people who have never smoked are diagnosed with lung cancer, many at younger ages. Dr. Gümüş and team will identify underlying genes that could indicate a higher risk of developing lung cancer, similar to what has been found with certain forms of breast, colorectal, and pancreatic cancers. People who carry the high-risk genes could then be monitored more carefully.

In-vivo and in-vitro diagnostics to improve lung cancer care

Career Development Award
Viswam S. Nair, MD
Stanford University
Stanford
CA

Dr. Nair is developing a blood test to help determine whether a pulmonary nodule seen on a PET-scan imaging screen is cancerous. The goal of this test, which will make use of circulating molecular biomarkers, is to accurately determine which patients are most likely to have lung cancer and, therefore, should have biopsies or surgery.