Biomarker or biomarker testing

DNA/RNA/protein changes that can predict cancer development or help is prognosis (response to a treatment)

DNA Methylation Changes in Peripheral Blood Mononuclear Cells as Biomarkers of Lung Cancer

LUNGevity Foundation/Uniting Against Lung Cancer Research Grant
William P. Bennett, MD
Beckman Research Institute at the City of Hope
Duarte

Dr. Bennett is evaluating potential biomarkers for their use in identifying lung cancer patients by comparing blood samples taken from patients with lung cancer and from patients without lung cancer. His goal is to build a panel of biomarkers that will aid in diagnosis.

Molecular signatures to predict response in neoadjuvant chemoradiation therapy of Stage III NSCLC patients

LUNGevity Foundation/Respiratory Health Association of Chicago Research Grant
Jeffrey A. Borgia, PhD
Rush University Medical Center
Chicago

Dr. Borgia is developing a process based on biomarkers derived from tissue and clinical factors such as age, smoking history, histology, and stage of diagnosis of lung cancer. This process will identify which patients with advanced-stage lung cancer will respond to medical treatment and thus qualify for surgery that potentially could cure the cancer.

Identification and validation of exhaled breath biomarkers for the detection of early stage lung cancer

LUNGevity Foundation/Partnership for Cures Research Grant
Peter J. Mazzone, MD, MPH, FRCPC, FCCP
The Cleveland Clinic Foundation
Cleveland

Dr. Mazzone is identifying exhaled breath biomarkers for the detection of early-stage lung cancer. This breath biomarker work may also lead to a new way to characterize lung cancers, determine their prognosis, and predict and monitor their response to therapy.

Developing Novel Biomarkers and Targets to Address Small Cell Lung Cancer

LUNGevity Foundation/The University of Kansas Cancer Center Research Grant
Sitta Sittampalam, PhD
University of Kansas Medical Center
Kansas City
Chao Huang, MD

Dr. Sittampalam is determining whether circulating tumor cells can be a useful blood-based tumor marker in untreated patients with extensive-stage small cell lung cancer who are planning to receive chemotherapy. He is also exploring the feasibility of genomic profiling using circulating tumor cells.

MiRNA expression profiling to predict recurrence after resection of stage I NSCLC

National Lung Cancer Partnership/LUNGevity Foundation Research Grant
Sai Yendamuri, MD
State University of New York at Buffalo
Buffalo

Dr. Yendamuri is conducting a clinical trial among stage-1 non-small cell lung cancer patients to confirm a microRNA signature for the prediction of the recurrence of lung cancer after surgery.  He then will develop a blood-based microRNA profile for the detection of lung cancer recurrence.

Chromosome 7q copy number and lung adenocarcinoma invasion

National Lung Cancer Partnership/LUNGevity Foundation Research Grant
May-Lin Wilgus, MD
Columbia University Medical Center
New York

A region in chromosome 7 has more copies than normal in patients with adenocarcinomas. Dr. Wilgus is determining whether these extra copies contribute to the development of lung cancer and how it can be targeted to lessen its effects.

Blood Tests for the Early Detection of Lung Cancer

Protect Your Lungs/ LUNGevity Foundation Research Grant; funded in part by A Breath of Hope Foundation
Samir Hanash, MD, PhD
Fred Hutchinson Cancer Research Center
Seattle
Gary Goodman, MD
Fred Hutchinson Cancer Research Center
Seattle
WA
Christopher Li, MD, PhD
Fred Hutchinson Cancer Research Center
Seattle
WA

Never-smokers with lung cancer represent 15% of all lung cancer patients. However, never-smokers do not undergo computed tomography (CT) for screening. Dr. Samir Hanash and his team are identifying biomarkers in the blood of low-risk people. Their ultimate aim is to develop a blood test to screen never-smokers.

Combined Protein and miRNA Profiles for the Early Detection of Lung Cancer

Protect Your Lungs/ LUNGevity Foundation Research Grant; funded in part by A Breath of Hope Foundation
Steven M. Dubinett, MD
David Geffen School of Medicine at UCLA
Los Angeles
Krysan Kostyantyn, PhD
David Geffen School of Medicine at UCLA
Los Angeles
CA

Lung cancer cells produce different types of proteins and RNA molecules that circulate in the blood. Dr. Steven Dubinett and his team have discovered 17 unique miRNAs in the blood of lung cancer patients and other high-risk individuals, such as smokers. Blood of healthy and low-risk people do not have these miRNAs. They are developing an miRNA-based blood test to predict which high-risk individual might develop lung cancer.

Folate-related biomarkers as predictors of response to pemetrexed therapy

Alexander Steven Whitehead, DPhil
University of Pennsylvania
Philadelphia

Pemetrexed is a chemotherapy drug commonly used for the treatment of non-small cell lung cancer. The drug blocks two proteins called DHFR and TS that cancer cells need to grow. Not all patients respond to pemetrexed. Dr. Alexander Whitehead is studying how changes in the DHFR and TS genes predict response of non-small cell lung cancer patients to pemetrexed.

Predictive blood-based markers of response to VEGF inhibitors in NSCLC

A Breath of Hope Lung Foundation
John V. Heymach, MD, PhD
University of Texas MD Anderson Cancer Center
Houston
David Carbone, MD, PhD
The Ohio State University
Columbus
OH

Cancer cells make chemicals that attract blood vessels. This process is known as angiogenesis. Drugs that inhibit angiogenesis are already being used to treat lung cancer patients. Unfortunately, not all patients respond to angiogenesis inhibitors. Dr. John Heymach is studying what determines whether a patient will respond.