Adenocarcinoma

 The most common subtype of NSCLC

Targeting CHFR through PARP-inhibition: A novel strategy to overcome taxane resistance in adenocarcinomas of the lung

LUNGevity Foundation/Uniting Against Lung Cancer Research Grant
Johan C. Brandes, MD, PhD
Emory University
Atlanta

The PARP protein is a protein that protects cancer cells from being killed by chemotherapy. Dr. Brandes is determining how drugs that stop the PARP protein can be used for targeted therapy of non-small cell lung cancer.

Analysis of Lung Adenocarcinoma Heterogeneity Based Upon Cell-of-Origin

National Lung Cancer Partnership/LUNGevity Foundation Research Grant
Mark W. Onaitis, MD
Duke University
Durham

The KRAS gene is the most common mutation in non-small cell lung cancer. Dr. Onaitis is studying how mutations of the KRAS gene affect different types of cells in the lungs and how these differences can be used to develop a targeted therapy that can lessen the effects of KRAS in lung cancer cells.

Chromosome 7q copy number and lung adenocarcinoma invasion

National Lung Cancer Partnership/LUNGevity Foundation Research Grant
May-Lin Wilgus, MD
Columbia University Medical Center
New York

A region in chromosome 7 has more copies than normal in patients with adenocarcinomas. Dr. Wilgus is determining whether these extra copies contribute to the development of lung cancer and how it can be targeted to lessen its effects.

Blood Tests for the Early Detection of Lung Cancer

Protect Your Lungs/ LUNGevity Foundation Research Grant; funded in part by A Breath of Hope Foundation
Samir Hanash, MD, PhD
Fred Hutchinson Cancer Research Center
Seattle
Gary Goodman, MD
Fred Hutchinson Cancer Research Center
Seattle
WA
Christopher Li, MD, PhD
Fred Hutchinson Cancer Research Center
Seattle
WA

Never-smokers with lung cancer represent 15% of all lung cancer patients. However, never-smokers do not undergo computed tomography (CT) for screening. Dr. Samir Hanash and his team are identifying biomarkers in the blood of low-risk people. Their ultimate aim is to develop a blood test to screen never-smokers.

Folate-related biomarkers as predictors of response to pemetrexed therapy

Alexander Steven Whitehead, DPhil
University of Pennsylvania
Philadelphia

Pemetrexed is a chemotherapy drug commonly used for the treatment of non-small cell lung cancer. The drug blocks two proteins called DHFR and TS that cancer cells need to grow. Not all patients respond to pemetrexed. Dr. Alexander Whitehead is studying how changes in the DHFR and TS genes predict response of non-small cell lung cancer patients to pemetrexed.

Identifying Tumor Genomic Changes in Lung Cancers

This grant was funded in part by Upstage Lung Cancer
Rebecca Heist, MD, MPH
Massachusetts General Hospital
Boston
Anthony Iafrate, MD
Massachusetts General Hospital
Boston
MA
William Pao, MD, PhD
Vanderbilt University
Nashville
TN

Targeted therapies have shown great promise. However, up to 40% of patients with lung cancer do not test positive for a known target. Dr. Rebecca Heist is studying this group of patients and using DNA sequencing technology to identify novel targets for treatment.

Examining LKB1 status as a biomarker for response of lung cancer to metformin

Edward Gabrielson, MD
Johns Hopkins University School of Medicine
Baltimore

Metformin is an FDA-approved drug for the treatment of diabetes. Dr. Edward Gabrielson and his colleagues have found that a gene called LKB1 is altered in 40% of lung cancer patients. He is studying whether lung cancer cells with mutations in LKB1 are sensitive to metformin. His ultimate goal is to use an already-approved drug for the treatment of LKB1-positive lung cancers.

Biomarkers for personalizing adjuvant therapy in NSCLC – increasing cures

David P. Carbone, MD, PhD
The Ohio State University
Columbus
John Minna, MD
University of Texas Southwestern Medical Center
Dallas
TX
Ignacio Wistuba, MD
University of Texas MD Anderson Cancer Center
Houston
TX

Patients with stage I and II lung cancer usually undergo surgery to treat their cancer. Sometimes, the cancer comes back. Using chemotherapy with surgery can prevent the cancer’s return. Dr. Carbone is studying how we can identify which stage I and II patients may benefit from chemotherapy.

A system biology approach to biomarkers for early detection of lung cancer

This grant was funded in part by Thomas G. Labrecque Foundation
Suzanne Miyamoto, PhD
University of California Davis
Sacramento
Oliver Fiehn, PhD
University of California Davis
Sacramento
CA
Karen Kelly, MD
University of California Davis
Sacramento
CA

Biomarker-based tests that complement CT will make it easier to detect lung cancer early. These tests should also be useful for both high-risk (current and former smokers) and low-risk (never-smokers) populations. Dr. Suzanne Miyamoto and her team are studying different protein, fat, and sugar molecules made by lung cancer cells. These different molecules can also be found in the blood of lung cancer patients. Their ultimate goal is to develop a blood test for the early detection of lung cancer.

Biomarkers to improve clinical assessment of indeterminate lung nodules

York Miller, MD
University of Colorado Denver, AMC and DC
Aurora
Wilbur Franklin, MD
University of Colorado Denver, AMC and DC
Aurora
CO
Kavita Garg, MD
University of Colorado Denver, AMC and DC
Aurora
CO

Computed tomography (CT) has a high false-positive rate. Less than 5% of people with nodules found through CT actually have lung cancer. Cells from benign nodules differ from malignant ones in two ways: they have a normal number of chromosomes and they make the same proteins as normal lung cells. Dr. York Miller is taking advantage of these differences. His team is developing a sputum-based test to determine whether a nodule is malignant or benign. The test will help decide whether the nodule requires follow-up.