Epidermal growth factor receptor (EGFR)

A gene that is mutated in NSCLC. This is an actionable mutation. 

Targeted Combination Therapy for Lung Cancer Carcinogenesis

Targeted Therapeutics Research Award
Funded by LUNGevity Foundation in collaboration with The CHEST Foundation, the philanthropic arm of the American College of Chest Physicians
William Jeffrey Petty, MD
Dartmouth-Hitchcock Medical Center
Lebanon
NH

Bexarotene is a synthetic form of retinoid acid (Vitamin A) that has the potential for use in lung cancer chemoprevention. Dr. Petty is conducting a clinical trial with a treatment combination of bexarotene and erlotinib (Tarceva) in EGFR-positive patients who have metastatic non-small cell lung cancer (NSCLC). He is also evaluating biomarkers that will predict response to the combination regimen.

Mutational Analysis of the Tyrosine Kinome in Lung Cancer

Targeted Therapeutics Research Award
Funded by LUNGevity Foundation in collaboration with The CHEST Foundation, the philanthropic arm of the American College of Chest Physicians
William Pao, MD, PhD
Memorial Sloan Kettering Cancer Center
New York
NY

Dr. Pao’s research may determine whether specific mutations in tyrosine kinase genes make lung tumors vulnerable to EGFR-TKIs. A comprehensive analysis of the tyrosine kinase in lung cancers could also lead to new opportunities for drug development and more personalized molecularly targeted therapies.

Chemo-sensitizing Non-small Cell Lung Cancers to Gefitnib/Iressa & Erlotinib/Tarceva

Targeted Therapeutics Research Award
Funded by LUNGevity Foundation in partnership with Goldman Philanthropic Partnerships
Sreenath V. Sharma, PhD
Massachusetts General Hospital
Boston
MA

By modeling acquired resistance to gefitinib and erlotinib in the laboratory using a non-small cell lung cancer (NSCLC) cell line that is sensitive to these drugs, Dr. Sharma hopes to uncover the molecular basis for acquired resistance of NSCLC to these targeted therapeutics as well as clues to overcoming this resistance.

EGFR Pathway Alterations in Human Lung Adenocarcinoma

Targeted Therapeutics Research Award
Funded equally by LUNGevity Foundation and American Lung Association National Office
Matthew Meyerson, MD, PhD
Dana-Farber Cancer Institute
Boston
MA

Dr. Meyerson is exploring how a mutation in the EGFR cells can lead to cancer as well as what the mechanisms are for acquired resistance to EGFR therapies.

Targeting Gamma-Secretase and the Notch Pathway in Lung Cancer

Targeted Therapeutics Research Award
Funded equally by LUNGevity Foundation and American Lung Association National Office
Thao Dang, MD
Vanderbilt University Medical Center
Nashville
TN

Dr. Dang is studying the anti-tumor effect of gamma-secretases inhibitors, compounds that inhibit activation of the Notch pathway that is active in lung cancer cells. She is studying its effect both alone and in combination with traditional chemotherapy and targeted therapy.

Modulation of PGE2-Dependent EGFR Inhibitor Resistance in NCSLC by E-cadherin

Targeted Therapeutics Research Award
Funded equally by LUNGevity Foundation and the American Thoracic Society
Kostyantyn Krysan, PhD
David Geffen School of Medicine at UCLA
Los Angeles
CA

EGFR tyrosine kinase inhibitors (TKIs) are the mainstay for treatment for non-small cell lung cancer (NSCLC) patients whose tumors have mutations in the EGFR gene. Unfortunately, cancer cells eventually become resistant to TKIs. Dr. Krysan's laboratory has discovered that NSCLC cells produce a chemical called PGE2 that helps lung cancer cells grow in the presence of EGFR TKIs. This suggests that PGE2 helps cancer cells develop acquired resistance to TKIs. Dr. Krysan’s current research is to determine how PGE2 works.

EGFR/estrogen interactions: role in bronchioalveolar carcinoma and gender differences in the efficacy of antiangiogenic therapy

Targeted Therapeutics Research Award
Funded equally by LUNGevity Foundation and Joan's Legacy
John Heymach, MD, PhD
MD Anderson Cancer Center
Houston
TX

The role of the hormone estrogen in the development of lung cancer has been established. Dr. Heymach is studying how estrogen affects signaling by the EGFR gene and secretion of proteins that fuel the development of new blood vessels necessary to sustain the growth of the cancer.

Estrogen enhances the carcinogenic effects of the nicotine derivative NNK

Targeted Therapeutics Research Award
Funded equally by LUNGevity Foundation and the National Lung Cancer Partnership
Hildegard M. Schuller, DVM, PhD
University of Tennessee
Knoxville
TN

NNK is a powerful nicotine-derived carcinogen. Dr. Schuller is determining the exact role of estrogen in tumors caused by NNK. This understanding will provide new targets for the early diagnosis, prevention, and therapy of lung cancer in women.

Preventing Acquired Resistance to gefitinib and erlotinib in Non-Small Cell Lung Cancer

Targeted Therapeutics Research Award
Funded by LUNGevity Foundation, A Breath of Hope Foundation, and Partnership for Cures
Sreenath Sharma, PhD
Massachusetts General Hospital
Boston
MA
Jeffery Settleman, MD, PhD
Massachusetts General Hospital
Boston
MA

Patients with EGFR mutations are treated with EGFR drugs such as gefitinib (Iressa) and erlotinib (Tarceva). However, the cancer cells eventually develop resistance to these drugs. Dr. Sharma is  aiming to understand the processes by which non-small cell lung cancer cells develop resistance to gefitinib and erlotinib as well as  how these processes can be targeted to develop new therapeutic strategies for patients in whom gefitinib and erlotinib have failed.

Identifying Tumor Genomic Changes in Lung Cancers

Targeted Therapeutics Research Award
This grant was funded in part by Upstage Lung Cancer
Rebecca Heist, MD, MPH
Massachusetts General Hospital
Boston
MA
Anthony Iafrate, MD
Massachusetts General Hospital
Boston
MA
William Pao, MD, PhD
Vanderbilt University
Nashville
TN

Targeted therapies have shown great promise. However, up to 40% of patients with lung cancer do not test positive for a known target. Dr. Rebecca Heist is studying this group of patients and using DNA sequencing technology to identify novel targets for treatment.