Non-small cell lung cancer (NSCLC)

The most common type of lung cancer

Development of ALK-specific TCR-T cells for the eradication of ALK+ NSCLC

Partner Awards
Grant title (if any)
ALK Positive/LUNGevity Lung Cancer Research Awards
Roberto Chiarle, MD
Boston Children’s Hospital/Harvard Medical School
Boston
MA

In this project, Dr. Chiarle and his team will generate T cells that have engineered receptors, called TCR receptors (TCR-T cells), that will selectively target and attack the ALK protein that is expressed by tumor cells. Generation of such cells could be a powerful tool to eradicate ALK+ lung cancer cells and form the basis of a TCR-T cell-based clinical trial for patients with TKI-resistant ALK+ NSCLC.

Defining and novel therapeutic targeting of ALK fusion protein granules

Partner Awards
Grant title (if any)
ALK Positive/LUNGevity Lung Cancer Research Awards
Trever Bivona, MD, PhD
University of California, San Francisco
San Francisco
CA

Currently available ALK inhibitors are an effective treatment for lung cancer, but tumors can development treatment resistance. In this project, Dr. Bivona will explore a novel way to treat ALK-positive lung cancer by targeting “membraneless cytoplasmic protein granules,” a new mechanism of signaling in ALK-positive lung cancer. His team will use precision medicine approaches that are complementary to current ALK inhibitors and that could improve their efficacy as well as quality of life for patients. 

Tumor draining lymph node immunomodulation to decrease recurrence in NSCLC

Health Equity and Inclusiveness Junior Investigator Award
Jonathan Villena-Vargas, MD
Weill Medical College of Cornell University
New York
NY

Lymph nodes are small structures that work as filters for foreign substances, such as cancer cells and infections. These nodes contain infection-fighting immune cells that are carried in through the lymph fluid. This project will study the lymph node draining basin, which is involved in the spread of a tumor from the original location site to distant sites, and whether activating cancer-fighting T-cells can decrease recurrence in NSCLC.  Dr. Villena-Vargas will use animal models to investigate whether immune checkpoint inhibitors enhance lymph node T-cells memory, which increases their ability to recognize cancer cells in the bod and can prevent metastatic recurrence.

Lung cancer Equity Through Social needs Screening (LETS SCREEN)

Health Equity and Inclusiveness Junior Investigator Award
Ana Velazquez Manana, MD
University of California, San Francisco
San Francisco
CA

Dr. Velasquez Manana will conduct an observational study in a multiethnic group of patients with unresectable lung cancer to determine the association between social needs, care utilization, and quality of life.  The goal of this study is to fill a key knowledge gap in the care of patients with NSCLC and inform interventions to support patients at risk of social adversity during treatment to end disparities in lung cancer care.

Promoting lung cancer screening in Latinx patients with previous HNSCC

Health Equity and Inclusiveness Junior Investigator Award
Coral Olazagasti, MD
University of Miami
Miami
FL

In addition to tobacco use, having a previous malignancy is a risk factor for developing lung cancer. Head and neck cancer (HNC) survivors with a history of smoking have up to a 13% risk of developing lung cancer. Dr. Olazagasti’s study will assess the awareness and eligibility of lung cancer screening in Hispanic/LatinX HNC survivors via a survey questionnaire and understand the barriers to screening via qualitative interviews. The goal of her research is to create the first lung cancer screening program tailored for and focused exclusively on Hispanic/LatinX HNC survivors.

Synergistic expression of combined RT and dual-immune checkpoint blockade

Health Equity and Inclusiveness Research Fellow Award
Rebecca Shulman, MD
The Research Institute of Fox Chase Cancer Center
Philadelphia
PA

Recent studies have shown that high and low dose radiation used in combination with immunotherapy have a synergistic effect in modulating the growth of satellite tumors, which are tumor cells located near the primary tumor.  In this study, Dr. Shulman proposes using an animal model of metastatic lung cancer to test the hypothesis that radiation given in repeated very low dose pulses in combination with immunotherapy can further enhance immunotherapeutic benefit in metastatic lung cancer.

Isotoxic hypofractionation to personalize radiation for NSCLC

Veterans Affairs Research Scholar Award
Lucas Vitzthum, MD
Stanford University/VA Palo Alto
Palo Alto
CA

The purpose of this study is to develop and evaluate a method for personalized radiation therapy in patients with locally advanced NSCLC. Patients will be assessed regarding their expected risk of treatment toxicity, and those at lower risk will be treated in a fewer number of treatments with a more intensified dose of radiation. If successful, this could be used to inform optimal radiation treatment protocols as well as potentially reduce treatment and financial burden for patients, with a major impact on quality of life.

Predicting clinical benefit of immunotherapy in veterans

Veterans Affairs Research Scholar Award
Alex Bryant, MD
University of Michigan/VA Ann Arbor Healthcare System
Ann Arbor
MI

This study will use data from the Veterans Affairs system to develop statistical models to predict response to immunotherapy in patients with lung cancer. While immunotherapy has improved outcomes for many patients, it is still not well understood why some respond well and others do not.  If successful, this work will produce a comprehensive prediction model of immunotherapy benefit in lung cancer that could be used to counsel patients, inform patient-physician decision making, and identify patients who need more- or less-aggressive treatment.

Combination checkpoint blockade plus VEGF inhibitor in EGFR-mutated NSCLC

Career Development Award
This grant was funded in part by The Huff Project
Joshua Reuss, MD
Georgetown University
Washington
DC

Osimertinib is the standard of care for treating non-small cell lung cancer with EGFR mutations. Unfortunately, the tumors inevitably develop resistance to osimertinib. Currently, very few treatment options exist for patients whose cancers have become resistant to osimertinib. Dr. Reuss is conducting a phase 2 clinical trial to test whether two immunotherapy drugs, atezolizumab and tiragolumab, given with a VEGF inhibitor, bevacizumab, are effective in controlling EGFR-positive NSCLC that has become resistant to osimertinib.

Therapeutic targeting of BRAF fusion altered lung cancer

Career Development Award
Michael Offin, MD
Memorial Sloan Kettering Cancer Center
New York
NY

Alterations in the BRAF gene can lead to the development of non-small cell lung cancer. BRAF fusions are a type of BRAF gene alterations. These fusions are powerful growth stimulators of lung cancer. Currently, no treatment exists for cancers that harbor these BRAF fusions. Dr. Offin will be testing a series of new drugs in preclinical cell line and animal models of lung cancer. The ultimate goal of his project is to identify new drugs that can be tested in clinical trials.