Immunotherapy

A type of cancer therapy that uses substances to stimulate or suppress the immune system to help the body fight cancer

Developing new therapeutic approaches for RET-positive cancers

Partner Awards
Grant title (if any)
The Hamoui Foundation/LUNGevity Lung Cancer Research Award Program
Romel Somwar, PhD
Memorial Sloan Kettering Cancer Center
New York
NY

This project aims to develop new therapeutic approaches for RET-positive cancers, focusing on overcoming resistance to currently available RET inhibitors.  Dr. Somwar and colleagues will investigate ways to block the growth of lung cancers with altered RET in a pathway called MAPK (mitogen activated kinase), which is involved in many biological processes involving cell growth and survival.  MAPK is implicated in developing resistance to RET inhibitors and finding strategies to target this pathway in combination with RET could benefit many patients who have no approved therapy options after tumor reoccurence. 

 

 

Immunogenic peptide priming of dendritic cells for RET+ NSCLC

Partner Awards
Grant title (if any)
The Hamoui Foundation/LUNGevity Lung Cancer Research Award Program
Amy Cummings, MD, PhD
University of California, Los Angeles
Los Angeles
CA

This project will explore the use of neoantigens to evaluate immunogenic priming of dendritic cells (DC) in RET+ NSCLC.  Neoantigens are short protein fragments present only in cancer cells that bind to genetically encoded proteins known as human leukocyte antigens (HLA).  Dr. Cummings will use features of HLA to predict which cancer-specific protein fragments best match an individual’s immune system, utilizing a biobank of RET-rearranged NSCLC biospecimens. This approach could help identify optimal immunogenic targets, that could be translated into a pathway for clinical use of personalized DC vaccines.

 

 

Targeting tumor associated macrophages in immunotherapy resistant NSCLC

Partner Awards
Grant title (if any)
Brown/LUNGevity Award to Understand Mechanisms of Resistance to Immunotherapy
Dwight Owen, MD, MSc
The Ohio State University
Columbus
OH

This project will investigate the role of cells called macrophages, key components of the immune system that have multiple functions, including immune surveillance within a unique communication pathway called hedgehog (Hh). The hedgehog signaling pathway is involved in cell growth and differentiation, as well as maintenance of stem cells and tissue repair. Disruption or inhibition of Hh can create an environment that is less favorable for survival of cancer cells, allowing a patient’s immune system to combat it more effectively.  This research has the potential to benefit patients who have been diagnosed with NSCLC, who have not responded to current treatments including immunotherapy by boosting the body’s own defense mechanisms.

 

 

Developing EGFRxHER3 bispecific CAR-T cells for targeting EGFR TKI DTPCs

Career Development Award
Yan Yang, PhD
MD Anderson Cancer Center
Houston
TX

In patients with EGFR-mutant NSCLC, tyrosine kinase inhibitors (TKIs) have been an effective treatment, but over time these patients develop resistance to TKIs, leading to tumor relapse.  Dr. Yang’s project focuses on cancer cells called drug-tolerant persisters (DTPs), which are implicated in TKI resistance.  A gene called HER3 is expressed in DTPs, and Dr. Yang will use specially engineered immune cells, called CAR-T cells, to target both HER3 and EGFR simultaneously.  If successful, this approach would result in a bi-specific CAR-T cell that can be further evaluated in clinical trials.

 

 

Building Reliable Oncology Navigation to Ensure Adjuvant Management: BRONx-TEAM Project

Career Development Award
Tamar Nobel, MD, MPH
Montefiore Medical Center
Bronx
NY

The introduction of targeted therapies and immunotherapy for early-stage lung cancer is associated with improved survival, but patients can only benefit if they partake in adjuvant and neoadjuvant therapies.  Data has shown that inequalities exist for patients with lower socioeconomic status as well as non-White patients when it comes to being referred for and receiving treatment after surgery.  These inequalities are likely to increase as new drugs are developed in clinical trials comprised of predominantly white patients.  In this project, Dr. Nobel will study the impact of disparities on uptake of adjuvant therapy for NSCLC in a largely minority patient population at Montefiore Medical Center in Bronx, NY.  She will provide social support and health literacy to engage patients in their care and collect genetic data about their tumors, which will contribute to future clinical trials that are more inclusive.

 

 

Next-generation pathologic response assessment in patients with lung cancer

Career Development Award
Julie Deutsch, MD
Johns Hopkins School of Medicine
Baltimore
MD

Dr. Deutsch’s proposal centers around finding better pathologic predictors of response to neoadjuvant IO in early stage NSCLC.  She will utilize machine learning/artificial intelligence to test an algorithm that she and her team have developed that assesses percent residual viable tumor (%RVT), which is the amount of tumor left at the time of surgery.  Dr. Deutsch will also characterize tissue specimens using a novel immunofluorescence platform to identify cell types and spatial relationships that are associated with patient benefit to immunotherapy+chemotherapy.  This approach can help inform which patients should receive a given therapy, how they will respond, and additional possible targets for the development of new therapies.

 

 

Role of KIRs in Regulating Anti-tumor Immunity and Autoimmunity

Career Development Award
Diane Tseng, MD, PhD
University of Washington and Fred Hutchinson Cancer Center
Seattle
WA

Checkpoint immunotherapy has advanced treatment of NSCLC, but the majority of patients do not experience long-term disease control and are at risk for autoimmune-related side effects.  In this study, Dr. Tseng will examine specialized cells called CD8+ T that express receptors (KIR+) that suppress autoimmunity to understand how these cells regulate the immune system’s cancer-fighting ability during checkpoint immunotherapy treatment.  Insights gained from this study could result in better strategies for improving efficacy while decreasing immune-related side effects.

Randomized Phase II Trial of Iadademstat with ICI Maintenance in SCLC

Career Development Award
Noura Choudhury, MD
Memorial Sloan Kettering Cancer Center
New York
NY

Small cell lung cancer (SCLC) is difficult to treat, and most patients diagnosed have a poor prognosis. Most patients with SCLC treated with first line chemoimmunotherapy progress within months of immune checkpoint inhibitor (ICI) maintenance therapy. Previous studies in mice have revealed that SCLC treated with iadademstat and maintenance ICI shows enhanced tumor response compared to ICI alone. Dr. Choudhury will conduct a phase II randomized trial investigating this combination in patients with SCLC versus standard of care ICI alone to evaluate progression free survival.

Development of ALK-specific TCR-T cells for the eradication of ALK+ NSCLC

Partner Awards
Grant title (if any)
ALK Positive/LUNGevity Lung Cancer Research Awards
Roberto Chiarle, MD
Boston Children’s Hospital/Harvard Medical School
Boston
MA

In this project, Dr. Chiarle and his team will generate T cells that have engineered receptors, called TCR receptors (TCR-T cells), that will selectively target and attack the ALK protein that is expressed by tumor cells. Generation of such cells could be a powerful tool to eradicate ALK+ lung cancer cells and form the basis of a TCR-T cell-based clinical trial for patients with TKI-resistant ALK+ NSCLC.

Tumor draining lymph node immunomodulation to decrease recurrence in NSCLC

Health Equity and Inclusiveness Junior Investigator Award
Jonathan Villena-Vargas, MD
Weill Medical College of Cornell University
New York
NY

Lymph nodes are small structures that work as filters for foreign substances, such as cancer cells and infections. These nodes contain infection-fighting immune cells that are carried in through the lymph fluid. This project will study the lymph node draining basin, which is involved in the spread of a tumor from the original location site to distant sites, and whether activating cancer-fighting T-cells can decrease recurrence in NSCLC.  Dr. Villena-Vargas will use animal models to investigate whether immune checkpoint inhibitors enhance lymph node T-cells memory, which increases their ability to recognize cancer cells in the bod and can prevent metastatic recurrence.