Search Instructions
Use the filters below to search for research projects. For the fillable fields, you can type in any portion of a search string.
Use the filters below to search for research projects. For the fillable fields, you can type in any portion of a search string.
Dr. O’Donnell has discovered that lung cancer cells make a protein called PCDH7 that is present on the surface of cancer cells where it may be accessible to therapies. In cooperation with the KRAS protein, the PCDH7 protein relays signals from outside the cell to make cancer cells grow faster. She is studying the function of the PCDH7 protein and developing strategies to reduce its effect on the KRAS pathway.
Cancer cells have found ways to block the body’s own immune system from helping to destroy the tumor. However, newly developed drugs can make the patient’s own immune system more efficient. This team will administer two different immunotherapy drugs to lung cancer patients and determine whether the addition of another drug, PFB-509, can improve the anti-tumor effects and patient outcomes.
Dr. Forde is working to apply a kind of immunotherapy that has been successful in people with lung cancer in later stages to people with early-stage lung cancer, stimulating their immune system to attack cancer cells. This treatment, nivolumab, uses anti PD-1 antibodies to release the “brakes” on the immune system.
Each year, more than 22,000 people who have never smoked are diagnosed with lung cancer, many at younger ages. Dr. Gümüş and team will identify underlying genes that could indicate a higher risk of developing lung cancer, similar to what has been found with certain forms of breast, colorectal, and pancreatic cancers. People who carry the high-risk genes could then be monitored more carefully.
Brain metastases are extremely common in both NSCLC and melanoma patients. Two new immunity-boosting drugs are showing promise against both of these kinds of cancer. However, whether these drugs work on cancer cells that metastasize and lodge in the brain is not known. Dr. Jilaveanu will study patients with brain metastases treated with the new drugs to find biomarkers that could predict the patients’ response to this treatment.
A subset of lung cancer patients have mutations in a gene called ALK. Dr. Lovly will identify new molecular targets that can be blocked in combination with ALK inhibitors to overcome the resistance that often develops after successful treatment and to promote better responses.
With the goal of a simple blood test that permits early detection of lung cancer, Dr. Patel will test a new technology to see if it can accurately identify lung cancer-specific telltale changes in the blood of patients with early-stage lung cancer.
Small cell lung cancer is an exceptionally aggressive type of lung cancer. While these tumors are initially responsive to a combination of chemotherapy drugs, tumor recurrence is near universal. Dr. Poirier will develop and study models of drug resistance to identify new strategies to overcome chemotherapy resistance.
Dr. Rieger-Christ and team are developing a minimally invasive test using nasal swabs to determine quickly and easily whether nodules found through CT screening are early cancer or benign lesions.
Drs. Sage and Weissman will test a new immunotherapy to boost the arsenal of immune cells to combat SCLC. They will work to disable a protein on the cancer cells that inhibits macrophages, a type of immune cell that can engulf and destroy cancer cells. This will boost the killing capacity of macrophages and recruit more immune cells to the area by the tumor.
Lung cancer cells depend on continuous cross-talk with other cells around them. Drs. Sweet-Cordero and Cochran will use decoy proteins to intercept and disable this essential molecular communications between the tumor and its environment, thereby destroying the cancer.
Dr. Burns is working on targeted therapy for NSCLC patients with mutations in a gene called KRAS, using a new class of drugs.
Dr. Halmos is working on a way to increase the effectiveness of radiation and chemotherapy that could also lead to personalized non-small cell lung cancer (NSCLC) treatments, especially for the third of all lung cancer patients with locally advanced lung cancer.
Dr. Jiang is identifying sputum biomarkers that could improve the process of detecting early-stage lung cancer by contributing to development of a non-invasive test that complements low-dose computed tomography (CT) scans and improves the accuracy of diagnosis.
Dr. Kozono is studying which genetic types of lung cancer are the most resistant to radiation, and which of these may be best treated with a combination of radiation and bortezomib, a drug already FDA-approved for another type of cancer.
Dr. Sequist will develop models that explain how NSCLC patients can acquire drug resistance to targeted therapies after a period of initial successful treatment, leading to the development of new treatments to help patients overcome the drug resistance.
Dr. Slack is studying the KRAS-variant, a recently discovered KRAS mutation found in over 20% of NSCLC patients, which has been shown to predict a patient’s response to cancer treatment. His research aims to confirm the role of the KRAS-variant to direct cancer therapy for lung cancer patients and as a potential future target for therapy.
Dr. Tennis aims to identify biomarkers that signal whether a patient is likely to benefit from iloprost and pioglitazone, two drugs that have demonstrated promise in reducing NSCLC risk, and determine whether they work in a clinical trial setting.
Dr. Wistuba and his colleague Dr. Humam Kadara are identifying biomarkers that could ultimately lead to the fist test to detect small cell lung cancer in its earliest and most treatable stages.
Dr. Beane will characterize how RNA expression in normal airway epithelial cells is affected by the presence of precancerous lesions and identify changes that predict if the lesions will become malignant or return to normal. Identifying these key molecular changes will contribute to early detection and possible chemo-prevention of lung cancer in high risk patients.